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GENERAL ABSTRACT 

In this thesis contingent claims techniques have been applied to various 

specifications of the economic problem of optimizing the expected value of a 

welfare function. In paper I we consider the relationship between financial 

market completeness, corn production, and the com target price program. Using 

the observation that the program is similar to a government issued put option, we 

found that the per acre program benefit, at around $20/acre was quite large, that 

the program encourages producers to trade options, and that the existence of 

contingent markets facilitates the policy maker in decoupling agricultural support. 

In paper II we proposed a method for estimating the expected cost to the 

government of the corn target price program. The model allows the government 

to understand the implications for output and budget control of different program 

parameter choices. This model may be adapted to other economic problems, 

such as the effects of wage or rent control laws on production and factor use. In 

paper HI we suggest that there is an inconsistency between the structure of 

existing contingent claims markets and how economists would seem to prefer to 

approximate demand functions. We propose an alternative structure that is 

consistent with the preferred approach to demand function approximation, and 

with the moment based foundations of statistics. In the final paper we propose 

an alternative perspective on problems involving the maximization of the 

expected value of a welfare function. We reformulate the objective function in 



www.manaraa.com

vii 

terms of options. We then show that existing techniques from economics, 

statistics, and finance theory may be applied to better understand the economic 

effects of uncertainty. Three standard economic problems are considered; 

valuation of a risky investment, production under price uncertainty, and the 

effects of price uncertainty on expected profit. 
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GENERAL INTRODUCTION 

Explanation of Dissertation Format 

The papers in this thesis, though similar in subject matter, are entirely self-

contained. They each have their own introduction, literature review, conclusions, 

and references. The papers are linked both through the issues addressed, and 

through the techniques used. Each paper seeks to understand the effect of 

nonlinearities on economic decisions and welfare when price is uncertain. All 

papers apply the financial theory of option pricing to models of economic 

phenomena. Following the papers is a general summary. 

Participant Value and Production Effects of Target Price Programs: A 

Contingent Claims Approach 

It has been noted that the U.S. target price program can be considered as 

contingent claims issued by the U.S. government to participating farmers. This 

paper extends the analogy by modeling the acreage requirement as the cost of 

participation. The results have implications for extension advice regarding 

participation decisions. It is also shown that the value of the program to 

producers depends on the existence and accessibility of contingent claims 

markets, and that the deficiency payments scheme makes it optimal to participate 

in options markets. Inferences are also made concerning the production effects 

of alternate forms of income support. 
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Government Costs of Target Price Supports 

The U S commodity target price program can be considered as the issuance 

by the U.S. government of contingent claims to participating farmers. This paper 

models the acreage set-aside requirement as the premium paid for these 

contingent claims. A rational expectations model of the interrelationships 

between program parameters, production, futures price, program cost, and 

producer benefit is developed. The model can accommodate stochasticity on 

either supply and\or demand. We use the model to estimate the expected 

government cost of the corn target price program in 1993. The principal 

innovation in this paper is the accommodation of choice variables in the 

stochastic model. The approach has applications in many other areas of 

economics. 

Polynomial Price Contracts 

This paper compares the approach to functional approximation used in 

mathematics, statistics, and econometrics with that used in creating contingent 

financial markets. Evidence is presented that suggests options markets are not 

optimal. An alternative market structure is proposed that would increase hedging 

effectiveness, and the risk return tradeoff for hedgers and speculators, 

respectively. Fewer derivative markets would be required per underlying asset 

than with options markets. The settlement price of these alternative markets 

would be some power of the closing futures price. The purpose of this paper is 
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to advocate that further research is warranted concerning the optimal structure of 

contingent markets when markets are costly to maintain. 

An Alternative Perspective on the Expected Value of a Function: 

Economic Applications 

By approximating the expected value of a function, nonlinear in a stochastic 

variable, as the sum of values of a sequence of options, we gain additional 

insights about economic behavior under uncertainty. This is because the 

respecified behavioral equations contain probabilities and conditional 

expectations that respond in a predictable manner to changes in the probability 

distribution. The procedure is formally developed in the context of expected 

utility maximization when output price is stochastic. It is applied to three 

problems: to value a rislqr investment, to study production under price 

uncertainty, and to study the effect of price uncertainty on expected output when 

output can be modified in response to realized price. 
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PAPER I 

PARTICIPANT VALUE AND PRODUCTION EFFECTS OF TARGET 

PRICE PROGRAMS: A CONTINGENT CLAIMS APPROACH 
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ABSTRACT 

It has been noted that the U.S. target price program can be considered as 

contingent claims issued by the U.S. government to participating farmers. This 

paper extends the analogy by modeling the acreage requirement as the cost of 

participation. The results have implications for extension advice regarding 

participation decisions. It is also shown that the value of the program to 

producers depends on the existence and accessibility of contingent claims 

markets, and that the deficiency payments scheme makes it optimal to participate 

in options markets. 
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1. INTRODUCTION 

The 1990 Farm Bill introduced some important changes into U.S. grain 

policies. For the first time, producers received deficiency payments based on 

historical (not actual) yields and acreages; also, they were given the opportunity 

to plant 15 percent of their program acreage to nonprogram crops. The effect of 

these changes was to ensure that acreage and input decisions were made in 

response to expected market conditions. The removal of the link between actual 

production and government payments also imbued the program with option-like 

characteristics. As is true for owners of put options, program participants receive 

the difference (if positive) between a fixed target (or strike) price, and the 

market price, for a specified volume of production that is independent of actual 

production. This option-like quality has several interrelated implications, each of 

which we examine here. 

By modeling the acreage reduction requirement as an option premium, one 

can develop participation criteria that do not depend on personal preferences. 

Because the participation decision is independent of the risk preferences of 

producers, we can develop objective measures of the benefits to producers of 

program participation under different program parameters, market conditions, 

and land-quality distributions. The procedure used to examine the participation 

decision differs from that currently used by extension agents and should, 

therefore, be of direct use to producers. 
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Because producers can choose to "sell" their government-provided put option 

on commodity options markets, the program does not have output-enhancing or 

risk-reducing effects. This raises the question as to the value of deficiency 

payments schemes when options and futures markets are absent (for example, 

agricultural commodities in the EC). The third section of the paper compares 

the certainty equivalent returns for typical midwestern grain producers under 

different institutional environments. These values indicate that, for producers 

enrolled in the program, there are benefits from having access to both futures 

and options markets. This result contrasts with that obtained by Lapan et al. 

(1991) who show that in the absence of government programs, producers have no 

incentive to participate in options markets. The CER values also show that the 

benefits of the program, when no futures or options market exists, can be quite 

large. This is true because a free put option is more valuable if put options 

cannot be purchased. This latter result means that "decoupled" deficiency 

payment schemes would have output expansionary effects if they are introduced 

into market envirormients where no commodity markets exist. One implication 

of this argument is that should the EC introduce a farm program that is similar 

in every respect to that currently used in the United States, the program would 

not be decoupled. 

The last section of the paper presents two theorems about the output 

expansionary effect of these programs in the presence and absence of contingent 

claims markets. 
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2. PREVIOUS WORK 

Gardner (1977) originally pointed out the close similarity between the 

deficiency payments schemes and the yet-to-be developed commodity options 

contracts. Gardner (1977) and Kahl (1986) suggested the deficiency payments 

scheme be replaced with free options. This idea proved impractical until 

payments were decoupled from actual production in the 1990 Farm Bill. In 1993, 

the government launched a pilot options program in nine midwestern counties. 

This program allows producers to choose between program participation or free 

put options. 

Turvey et al. (1988) showed how producers could use options markets to 

make the program participation decision. Their approach did not, however, allow 

for either market incompleteness or heterogeneity of land quality, important 

determinants of the cost of participation. Love and Foster (1990) and Brooks et 

al. (1992) model the effects of heterogeneous land quality on the participation 

decision, but do not follow through to decide when a given producer should 

participate. Innes and Hausser (1989) show how important the assumption of 

complete markets is in determining the relative effectiveness of different 

agricultural policies. It is shown that with incomplete markets government price 

guarantees, even with a set-aside requirement, can improve the welfare of 

farmers and consumers while also generating enough tax revenue to fund the 

program. In two subsequent (1990 a, 1990 b) papers Innes identified the 

conditions under which a target price policy increases welfare in an incomplete 
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market enviromnent. 

There has been considerable analysis conducted on the implications for 

supply of changing government program parameters. These include Floyd (1965), 

Lidman and Bawden (1974), Evans (1980), Lee and Helmberger (1985), Miranda 

and Helmberger (1988), and Perry et al. (1989). Of these studies only one, Lee 

and Helmberger, attempted to model supply response under a free market 

regime. This is because supply control of one form or another has been in effect 

in the United States for most major crops for all but a handful of years since 

WW n. Gardner (1987) considers some of the political determinants of the 

magnitude and nature of agricultural support. Chavas et al. (1983) investigates 

the acreage response to program parameters and futures prices. Marcus and 

Modest (1986) investigate the cost to the government of the price floor. 

To the best of our knowledge, there has been no rigorous attempt to link the 

program participation decision to the benefits (option value) and costs (option 

premium or set-aside requirement). This is surprising because as has become 

obvious since the implementation of the pilot options program, and as we will 

show in the next section, the participation decision is simply one of determining 

whether the program parameters are those of a fairly priced option. 
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3. THE CONTINGENT CLAIMS MODEL 

Under the provisions of the 1990 Farm Act a producer eligible for deficiency 

payments has contracted to idle a certain fraction, a, of base acres (eligible 

acres), B, in return for a price floor guarantee, Pq, on a pre-specified eligible per 

acre output, yo, for each of (1 - 0.15 - o)B acres. The 15 percent of base acres on 

which no deficiency payment can be made may be planted under any crop except 

fruits and vegetables. Assume the accessibility of put markets and denote the 

present value of a put option with strike price Pq as W(Pg). Because the 

producer can sell puts with strike price Pq to restore the position that would have 

pertained were there no program, the program benefits are 

(0.85 -  a )  By ,  W(P^ )  (1) 

in cash equivalents. Assume (as Black (1976) does) that there is no basis risk, 

that prices are lognormally distributed, that the short-term interest rate, r, is 

constant, that there are no transaction costs, borrowing constraints, or restrictions 

on short sales. Then the benefit to the producer of the program is 

(0.S5 - a) By„e -'MPg N(  -dj) - F, iV( -d,)]. (2) 

where T is time index value at harvest 

t is time index value at sign up for the program 

d, = [ln(F,/Po) + 0.5 o' (T - t)]/o (T -1) 

4 = [ln(F,/P<3) - 0.5 (T - t)]/o (T -1) 
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a is the implied volatility or the annualized standard deviation of the 

instantaneous rate of return. 

F, is futures price at time t (see Rubinstein 1976 or Myers and Hanson 

1993). 

The cost is the present value of foregone profits from set-aside land. The 

idled land will be the 100a percent of lowest quality land. Define PV(.) as the 

present value operator, n(v) as the per acre profit from land of quality v, (v is 

indexed such that 0 ^ v ^ 1), J(v) as the cumulative density function of a 

producer's land quality, and j'(v) as the probability density function of v. Then 

the cost is 

b) PV[n{v)]j{v)dv. (3) 
0 

Thus the participation decision depends on the sign of 

H = (0.85 - «) - F,N{-d,)] 
a (4) 

- B f PV[n(v)]j(v)dv. 
0 

Note that 

dH/da < 0, dH/dP^ > 0. 

We also note that 
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dH/ÔF, = - (0.85 - a) By^e N( -d^) 

-b1 {dPV[n(v)]/dF) j(v) dv < 0. 
0 

As futures price rises, participation falls for two reasons: the value of the 

guarantee falls and the cost of set-aside rises. 



www.manaraa.com

14 

4. THE PARTICIPATION DECISION 

In this section, we will consider the participation decision of a representative 

Midwestern corn producer in 1993. There are seven principal variables, the 

value of which may influence the decision. These are: the set-aside rate, the 

target price, the sowing date futures price, a measure of land quality spread, a 

measure of mean land quality, implied volatility, and interest rates. Implied 

volatility is measured as 0.224 from the April 16, 1993 price of the September 

1993 call with strike price $2.40. The interest rate is assumed to be the April 

1993 prime rate of 6 percent. Three set-aside rates are considered: a = 0.05, 

0.1, 0.15. Three target prices are considered: Pq = $2.60/bu, $2.75/bu, 

$2.90/bu. The price $2.75/bu is the target price set in law by the 1990 Farm Bill 

for the period 1991 through 1995. The futures price, F„ for settlement in 

December 1993 is assumed to be $2.415/bu, the 4/16/'93 price. 

In modeling land quality, we assume that per-acre rental rate fairly 

represents quality. We consider a farm with average quality land of $100/acre 

and another with average quality land of $120/acre. We assume profit is 

uniformly distributed and consider land-quality distributions on each farm type. 

The first quality distribution assumes all land is of the same quality; the second 

assumes the rental value is uniformly distributed from plus $30 to minus $30 of 

the mean quality. Thus the four distributions are: 

1) U[ $100, $100] 2) U[ $70, $130] 

3) U[ $120, $120] 4) U[ $90, $150]. 
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All distributions are considered in Table 1. We can see that for the program 

parameters used in Table 1, the per-acre value of the program is almost always 

positive/ 

The values in Table 1 rise with Pq, and with the futures price, and fall with 

the set-aside rate. They rise, but only marginally, with a rise in the spread of 

land quality. If one assumes that base yield rises with average land quality, then 

the program would appear to be approximately land quality neutral. For the 

conditions existing in the spring of 1993 ($2.75 target price, and 10 percent set 

aside), the program is worth approximately $20/acre to producers. 

The approach used to derive the values in Table 1 is of direct use to 

producers and to extension agents. In years when the government program is less 

generous, producers could use this approach when deciding on program 

participation. Also, a slight modification of the procedure would allow the 

producer to solve for a critical land rental value. If participation requirements 

required producers to set aside land with a rental value greater than this critical 

value, then program participation would not be optimal. A final use for the 

values presented in Table 1 would be for calculating the expected returns on corn 

production. This would equal the futures price times the expected yield plus the 

program yield times the values presented in Table 1. 

^Possible explanations for the real world nonparticipation are cross-compliance 
constraints, environmental restrictions, farm payment limitations, and philosophical dislike 
of government programs. 



www.manaraa.com

16 

Table 1: The Participation Decision: Per acre Value of the Target Price Program. 

Program Parameters 

a Pq a) Averagg land quality $100 b) Average land quality $120 
and base vield 115 bu/acre^ and base yield 135 bu/acre 

Distribution 
$100-$100 $70-$120 $120-$120 $90-$ 150 

$2.60 $18.2 $19.6 $21.2 $22.6 
0.05 $2.75 $28.7 $30.1 $33.5 $34.9 

$2.90 $40.4 $41.8 $47.3 $48.7 

$2.60 $11.9 $14.5 $13.7 $16.3 
0.10 $2.75 $21.7 $24.3 $25.2 $27.8 

$2.90 $32.7 $35.3 $38.1 $40.7 

$2.60 $5.6 $9.3 $6.2 $9.9 
0.15 $2.75 $14.7 $18.5 $16.9 $20.6 

$2.90 $25.0 $28.7 $28.9 $32.7 

$2.60 $-0.7 $3.9 $-1.4 $3.3 
0.20 $2.75 $7.8 $12.4 $8.6 $13.3 

$2.90 $17.3 $22.0 $19.8 $24.5 

^To calculate the per bushel value, divide the per acre values by 115 and 135. To 
incorporate basis, simply adjust the futures price by the expected difference 
between local cash prices and the maturity futures price. 
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5. THE EFFECT OF MARKET COMPLETION 

To evaluate the effects of market completion on welfare and output, we 

consider a typical Iowa crop producer. The farm is 400 acres all under crops. 

Com is grown on 60 percent of the land and soybeans on the remaining 40 

percent. Budget data is extracted from "Estimated Costs of Crop Production in 

Iowa, 1993" (Iowa State University 1992). Expected corn yield is 135 bu/acre 

while expected soybean yield is 45 bu/acre. Per-acre total costs for corn is 

$297.84, while for soybeans it is $233.76. Spring futures prices for December 

corn and November soybeans are $2,415 and $5,975, respectively. It is assumed 

that program yield per acre is the expected 1993 yield per acre. The set-aside 

rate and target price are set equal to the actual 1993 values of 10 percent and 

$2.75/bu, respectively. Annual implied volatility is assumed to be 0.2240 for corn 

and 0.1575 for soybeans as imputed from Black's formula and April 1993 option 

prices for September at the money contracts. We have no way of imputing the 

1993 log correlation between corn and soybean prices, but we assume that it is 

positive, and use three values of 0.1, 0.5, and 0.9. We choose a CARA utility 

function and consider two reasonable risk aversion levels representing low, and 

high-risk aversion (see Babcock et al. for a description on how to choose risk 

aversion coefficients). Finally, we consider four levels of market completion; no 

futures or options markets (column 3), futures markets in both corn and soybeans 

(column 4), one put market with strike price $2.75 (column 6), and futures 

together with a put market with strike price $2.75 (column 5). We also consider 
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a nonrandom subsidy which generates the same expected cost for the 

government. We consider the impact of this nonrandom subsidy when these are 

no markets (column 7) and when there are both futures and options markets 

(column 8). This nonrandom subsidy increases producer returns by the same 

amount, but does not have the risk-reducing effects of the put option. 

Table 2 presents the certainty equivalent returns for each situation.^ These 

figures are slightly exaggerated because risk-averse producers will control risk by 

reducing output. It can be seen that market completion is worth about $2,700 to 

producers with high-risk aversion. As the correlation between corn and soybean 

prices rise, the markets become more useful (increased certainty equivalent 

returns) because the producer's revenue becomes more variable. The availability 

of the options market at the target price when no futures markets exist (column 

6) does not increase the producer's welfare as much as the availability of futures 

markets only (column 4). This is because the option position the government 

donates to the producer is approximately correct, i.e., it is the one he or she 

would have purchased on the commodity options market. 

Comparing the nonrandom subsidy with the target price program when no 

financial markets exist (columns 7 and 3), we see that while low risk averters are 

not substantially affected, high-risk averters would prefer by far the target price 

program. When futures and options markets exist, producers are indifferent 

^e procedure we use to calculate the CER values is presented in the Appendix. 
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Table 2. Effect of market completion on certainty equivalent return to a typical 
Midwestern grain producer enrolled in the 1993 farm program 

fl) 

Risk 
Aversion 
Level 
k 
(2) 

No 
Futures 

or 
Options 

(3) 

Futures 
Only 
(4) 

Futures 
and 

Options 
(5) 

Options 
Only 
(6) 

Non-random 
Subsidy (same ex-

ante cost to 
government) 

No 
Futures Futures 

or and 
Options Options 

V7^ 78^ 

0.1 
0.00001 $64,053 $64,188 $64,227 $64,071 $63,418 $64,227 

0.1 
0.0002 $61,727 $63,739 $64,227 $61,854 $51,830 $64,227 

0.5 
0.00001 

0.0002 

$64,014 

$61,502 

$64,188 

$63,729 

$64,227 

$64,227 

$64,078 

$62,138 

$63,225 

$49,198 

$64,227 

$64,227 

0.9 
0.00001 

0.0002 

$63,974 

$61,368 

$64,188 

$63,729 

$64,227 

$64,227 

$64,111 

$62,975 

$63,031 

$46,791 

$64,227 

$64,227 

between the policies (columns 5 and 8). 

These results indicate that in the EC, where options markets by and large do 

not exist, a target price program would be preferred to nonrandom direct 

payments. This result is consistent with limes (1990 a, 1990 b). Curiously, in 

changing their crop support programs, the EC appears to have opted for a 

nonrandom subsidy (see any description of the CAP reform proposals). This may 

be because of a belief that farm prices will not vaiy much in the future, or it may 

be to make farm support more open and so easier to control. 
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6. THE PROGRAM AND MARKET COMPLETION 

In this section, we shall present two theorems that formalize the statements 

made earlier about market completeness. These theorems are relevant because 

EC policy makers have argued that U.S. deficiency payments schemes are not 

production neutral and also because the ongoing reforms of the CAP are moving 

the EC toward U.S.-type deficiency payments schemes (FAPRI 1992). 

A Separation Theorem:^ Consider a risk averse expected utility maximizing 

firm with CARA preferences facing a linear profit function and an uncertain price. 

Let there be no contingent markets except a put market with strike price Pq. Then 

output is invariant to the farm's endowment of program output, while endowments 

are substituted one for one with put purchases in the options market. 

Proof: Express the expected utility function as 

EU[Py -  Ciy) + -  P)LX, + -  P)L -  P^)Z] 

where L = 0 if Pf. < P (6) 

L = 1 otherwise. 

Here y denotes output, C(y)is the cost function, is the farm's endowment of 

program output, Z is farm purchases of put options, and is the price of a put 

option. The producer chooses y and Z. The first order conditions are 

^We call this a separation theorem because the farm program is completely decoupled 
under CARA. 
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E[U'[A] [f -  C'(y)\)  = 0, (7) 

and 

E9]'lA]{(Pa-P)L-PJi)  '0 ,  (8) 

where A = Py - C(y) + (Pq - P) L X,, + ((Pq - P) L - Pz) Z. Completely 

differentiating the first order conditions with respect to y, Z, and Xq we find 

SZ ^ , jq> 

- 4% 

where Eg y is the cross partial derivative with respect to a and b. In each case by 

substituting in the CARA condition and using the first order conditions we find 

that Ez,z = ^z,*o and ^y.z ^y,*o. and so equation (9) reduces to 0 and 

equation (10) reduces to - IM 

This theorem shows that the current U.S. deficiency payments scheme is 

decoupled in the absence of nearly all contingent markets so long as producers 

exhibit constant absolute risk aversion. 
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A Nonseparation Theorem: Consider a risk averse expected utility maximizing 

firm facing an uncertain output price. Let there be no contingent markets in price, 

let the endowment in price guarantees be less than or equal to output, let marginal 

cost increase in output, and let target price be no greater than marginal cost. Then 

production rises with the level of endowment and with the target price. 

Proof: Denote the cumulative distribution function of price by J(P). The 

firm seeks to 

p 

Mm, I UlPy-C(y) +(/>„ -P)X,] dJ(P) * ? UlPy-C(y)] dJ(P) (") 
0 Pa 

The first order condition is 

/  U'[M][P -  C^(y)] dJ(P) + /  U'[N][P "  C(y)] dJ{P) = 0 (12) 
0 Pa 

where 

M =Fy-C(y)-^ (P^ -  P)X, 
N =Py -  C(y) 

Totally differentiating (12) with respect to Xq and y we find 
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dX, ? U" [M][P -C'(y)WG - P ]  d J ( P )  +  
0 

dy I iU'^ [M][P -C'(y)]^ -  U'[M] C" (v)]} dJ{]?) (13) 
0 

+ 7 KV" [N][f - C'(y)]^ - U'[N] C" (y)]) dJ{P) = 0 

Denote the second integral in (13) by A^, and the third integral in (13) as A^. 

Solving (13) for dy/dXo, we get 

ify/dX  ̂ = -Î U"\M\W - C'MlPo-P]dl(P)l\A« (14) 
0 

Because C"(y) > 0, we see that the denominator is negative. Because the 

integration is over the set [0, Pq], we see that Pq - P > 0 in the numerator. 

Because Pq < C'(y), the numerator must be negative, and so output rises with 

the endowment. Now totally differentiate (12) with respect to Pq and y. The 

two terms found using the Leibnitz rule on the bounds of integration cancel, to 

leave 

dy * dyA^ * dPaxJi U" [M\\P -  C'mdHf) = 0 
0 

Tidying up we find 

dy/dPa ' - Î U"mW -C'(y)\ dJ(F)/\A^ > OH 
0 
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This theorem tells us that under incomplete markets, output will rise with 

increased price support if the target price is lower than marginal cost. 
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7. CONCLUSIONS 

By modeling the program participation decision as that of determining 

whether an option is fairly priced, we have developed a way of measuring the per 

bushel or per acre benefit to producers of any given set of program parameters. 

It can be shown that, because options markets exist, the U.S. deficiency payments 

scheme does not substantially alter planned production. It can also be shown 

that U.S.-type schemes encourage producers to participate in commodity options 

markets. In economies where no commodity options markets exist, U.S.-style 

deficiency payments schemes would have output expansionary effects because 

they reduce risk. This is a paradoxical result. U.S. producers have access to 

government-provided options and market provided options; producers in Europe 

do not have access to any type of options market. If, as now seems likely, the EC 

moves toward a U.S.-style deficiency payments scheme, the per-unit benefit to 

producers and the output expansionary effects will be higher than an equivalent 

scheme in the United States. 
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APPENDIX I 

Consider the CARA utility function U(Y(P)] where Y, income, depends on 

price, P. 

U[Y(P)] = 1 -

where A is the risk aversion coefficient. Income will be the sum of business and 

financial profits. Using GAUSS software, we numerically integrate utility with 

respect to the price density function 

J (l-e-^y(f)) dP = EU. 
O 

Denote the certainty equivalent return by c. It is the certain income that 

generates the same utility as a rislqr income distribution. 

1 - =EU 

.  ,  _ Ln[l  -  EU] 
(-X) 

To get an intuitive understanding of this procedure, draw a risk-return 

indifference curve. The CER is the point at which this curve intersects the 

vertical axis. 
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ABSTRACT 

The U.S commodity target price program can be considered as the issuance 

by the U.S. government of contingent claims to participating farmers. This paper 

models the acreage set-aside requirement as the premium paid for these 

contingent claims. A computable, equilibrium model of the interrelationships 

between program parameters, production, futures price, program cost, and 

producer benefit is developed. The model can accommodate stochasticity on 

either supply and\or demand. We use the model to estimate the expected 

government cost of the corn target price program in 1993. 
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1. INTRODUCTION 

The U.S. government uses a target-price, deficiency-payments scheme to 

support the income of most corn and wheat producers. The government 

guarantees to offset the revenue implications of a price outcome below a 

politically determined price floor. This price floor is called the target price. 

Since 1986, the guarantee relates only to a prespecifîed volume of output. It 

applies only if the producer agrees to leave idle a prespecified area of land. 

Thus, the benefit of program participation is a guaranteed price floor, while the 

cost of participation is the profit foregone due to the set-aside requirement. 

Gardner (1977) observed the similarity between the program and yet to be 

developed agricultural options contracts. Kahl (1986) suggested that it would be 

more efficient for the government to use options markets to stabilize producer 

income than to continue writing its own de facto put contracts. The 1990 Food, 

Agriculture, Conservation, and Trade Act legislated for the direct use of traded 

options markets as Kahl had suggested. This Options Pilot Program is available 

to producers as an alternative to existing target price and loan programs for 

some commodities in nine midwestem counties for the 1993 crop year. 

In this paper, we first show that the program participation decision is a 

straightforward cost benefit comparison that does not involve the individual's 

attitude toward risk. Because the participation decision is deterministic, we can 

impute, for any choice of target price and set-aside requirements, whether an 

individual will participate. Some additional knowledge of how producers will 
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respond allows us to predict nationally how much area will be set aside for any 

choice of program parameters. This in turn allows us to predict actual 

production, and the futures market rational expectations equilibrium response to 

this expected production. The model is closed by the direct link between the 

futures price and the option value. Model closure allows us to predict 

government costs, futures prices, and production for any given choice of program 

parameters. The last section of the paper implements the procedure using actual 

1993 data. 

Numerous simplifying assumptions are required to close the model and 

implement the procedure. These assumptions are used to overcome a lack of 

farm-level data. This data would be expensive to construct, but should be 

worthwhile given the ex ante farm program costs that can be measured. In the 

absence of this farm-level data, the procedures reported below will give a less 

accurate but, hopefully, unbiased measure of these costs. 
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2. PREVIOUS WORK 

There has been considerable analysis on the impact of government program 

parameters on crop supply. These include Floyd (1965), Lidman and Bawden 

(1974), Evans (1980), Lee and Helmberger (1985), Miranda and Helmberger 

(1988), and Perry et al. (1989). Of these studies, only one, Lee and Helmberger, 

attempted to model how supply would respond to a free market regime. This is 

because supply control of one form or another has been in effect for most major 

crops in the United States for all but a handful of years since the second world 

war. Gardner (1987) considered some of the political determinants of the nature 

and magnitude of agricultural support. Chavas et al. (1983) examined the 

acreage response to program parameters and futures prices. Marcus and Modest 

(1984) studied the input decision in an uncertain output price and quantity 

environment under a target price regime. In a subsequent paper, Marcus and 

Modest (1986) investigated the cost to the government of the price floor. None 

of these papers attempt to model the simultaneity of the interaction between the 

planting decision and the futures price at planting. 



www.manaraa.com

36 

3. THE CONTINGENT CLAIMS MODEL 

Under the provisions of the 1990 Farm Act, a participant contracts to idle 

a certain fraction, a, of base acres (eligible acres), B, in return for a price floor 

guarantee, Pq, on a prespecified eligible per acre output, yg, for each of (1 - 0.15 

- a)B acres. The IS percent of base acres on which no deficiency payment is 

paid may be planted under any crop except fruits and vegetables. Assume that 

there is easy access to put markets, and denote the present value of a put option 

with strike price Pq as W(PG,Fg t) where » is the price at time t of a harvest 

date com futures contract. Because the producer can sell puts with strike price 

Pq to restore the position that would have pertained were there no program, the 

dollar value of the program benefits is 

(0.85 -  a) By„ IV(P^FJ. (1) 

We make the Black and Scholes assumptions (1973) concerning the economic 

and trading environment. The benefit of the program is identical to the cost of 

(0.85 - a) B yo puts expiring at the harvest date. Thus, using the standard value 

of a put option (Rubinstein, 1976), the program benefits are 

(0.85 -  a) By„e "'C-')  [P, N(-d,)  -  F„ N(-d^] (2) 

where t is the time index; 

t = T is time index value at harvest; 
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t = 0 is time index value at sign up for the program; 

N(.) is the cumulative density function of a standard normal distribution; 

di = NPyPo) + 0.5 (T - t)]/o (T -1); 

dz = [In(FyPo) - 0.5 (T - t)]/a (T -1); 

r is the prime interest rate; 

a is the implied volatility or the annualized standard deviation of the log of 

futures price. 

The cost is the present value of foregone profit from set-aside land. The 

idled land will be the 100 a percent of lowest economic quality land^. Let PV(.) 

denote the present value operator, let n(v) denote per acre profit from land of 

quality v, let v be indexed such that 0 ^ v ^ 1, and let j(v) be mass density 

function of v. Then the cost is 

a 

Bf PVln(v)]j(v)du.  (3) 
0 

If contingent markets are unbiased and complete, then on any part of land 

PV[7i(v)] profit can be assured. Thus, the participation decision depends on the 

sign of 

The land set aside might not be of the lowest quality because factors such as 
accessibility and field size may enter the set-aside decision (Hoag et al. 1993). 



www.manaraa.com

38 

H . (0.85 -  a) By„e JV(-dj) - F, 
« 

-B f PV[n{y)\ j(y) dv. 
0 

Note that 

dH/da < 0. dH/dPfj  > 0.  

Having considered the participation decision of an individual producer 

will now aggregate up to the market level. 
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4. THE MARKET MODEL 

In this section, we develop a closed general equilibrium model of corn and 

soybean production, and of participation in the com target price program. 

Inevitably, several simplifying assumptions are necessary. We assume that there 

is a fixed stock of land, Aq. We set this equal to 143 million acres, the average 

amount of land either under corn or soybeans, or set aside to com in the crop 

years 1989/90, 1990/91, and 1991/92. This land is assumed to have only two 

uses, corn and soybean production. While not strictly correct, this assumption is 

not far from reality^. Let and Ap denote acres in soybeans, and total acres 

in the program respectively. Let denote acres in corn, but not in the program, 

surplus to the 0.15 Ap in the program on which no deficiency payment is made. 

Thus, Ag could be negative, but could never have value less than - 0.15 Ap. Then 

(5) 

The expression for total acres in corn is 

= A + (1 - «Mp- (6) 

We propose a technology 

6, = (7 )  

where Qj is total output of crop i; i = tc, sb; and kj A^' is yield per acre. Note 

^ To accurately implement the procedure we propose here, data would be needed to 
partition farms by size, base acreage allotment, region, land quality, and cost of production. 
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that 100 X dj is the percent change in yield per acre associated with a percent 

change in acres sown. In the agricultural economics literature, dj is commonly 

called the slippage coefficient. Henceforth we make the assumption that the 

coefficient is the same for both crops. 

Our ultimate intention is to find the rational expectations equilibrium futures 

prices and planted acres when output is stochastic. However, in order to develop 

intuition, we will first find the rational expectations equilibrium when output is 

deterministic and uncertainty enters through demand. We assume that per 

bushel variable costs, b, and b^y, are constant. 

Because there is a limit to the amount of land that can be placed in the 

program, the optimization problem involves two steps. First, we maximize the 

national profit function which is 

1. = (0.85 - .) * {F„ e -'M - b,}k, K + (1 - «M,]'" 
(8) 

* -bJK, \A„-A^ -A/^.  

Maximizing (8) with respect to A, and Ap, we get 

# " (fc, « K + (1 - (1 + à) 
(9) 

- {F^, e-'C-" - K - V (1 + d) . 0, 
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dn = {F,, - b,}k, [A^ + (1 - aMJ" (1 - a)(l + d) 

- e + d) 

+ (0.85 - a)>'o = 0. 

(10) 

Solving, we find 

and 

where 

and 

Ac = + (1 - «)^p = 

/ \ 

2i 
G, 

i /d 
(11) 

^.6 = 
% 

'3 

1/4 
(12) 

Gi = 
_ {JP,, e - ib,}*:. 

{f,», e -'(T-') - Ad,}*,»' 
(13) 

G, = (0.85 - a)y, IV(PM, (14) 

Therefore, 

«3 = -  U K a (1* d).  (15) 
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(l+d)/d 

Q c = K  (16) 
^3) 

and 

Qsb = ^sb 
G,G, 

Yl+d)/d 
(17) 

Now we have the indirect supply functions. The fraction may be 

interpreted as the ratio of program value to the producer to program cost to the 

producer. If, as we expect, -1 < d < 0, then both outputs will fall with a rise in 

this ratio. To close the model, we must establish demand relationships. 
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5. THE MARKET MODEL WHEN DEMAND IS UNCERTAIN 

If we assume a lognormal distribution with a known implied volatility, then 

all variables in the expressions G^, O2, and G3 are known at planting. However, 

and ^ are endogenous in that they in turn depend on the planting decision. 

Because W(Pq,Fc ,) depends on Fg „ it also is endogenous. We must close the 

model by considering the demand side. 

In their innovative paper, Marcus and Modest (1986) develop a partial 

equilibrium model to value the ex ante cost of the target price program. The 

model is partial in that it does not take into account either the aggregate effect 

of output decisions on the futures price, or the effect of the set-aside rate on the 

futures price. They assume that demand has a logarithmic relationship with both 

harvest date price and the Standard and Poor's 500 index. For realism here, we 

replace the S&P index with an index of livestock numbers, but otherwise adopt 

the Marcus and Modest assumptions. The resulting demand function is where 

QDj is the demand for good i; Fj ̂  is the price of good i at time T; S^ is the 

livestock index at time T; q is a constant; and Y,, are elasticities. The value for 

Yj must be consistent with the volatility of futures prices. Given that at harvest 

supply is fixed, any change in the value of Sj will change Fj j so that (18) holds. 

Taking the log of both sides of (18), and using the relationship 

Elx"^] = {E[x]y + Var[x] 
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we get 

Y/c/ - (/c,/ = 0, (18) 

where Og, a, are the implied volatility of livestock numbers on feed and the 

implied volatility of the harvest price of crop i, respectively. Rearranging and 

taking the square root of this expression gives 

Y, = (19) 

Now, to develop a relationship from the demand side between futures price 

and livestock numbers, note that futures price depends only on time and livestock 

numbers, 

= ns,) .  

We assume that livestock numbers follow a geometric Brownian motion. Thus, 

dS, = S,  a, dz^ (20) 

and, 

dkf = Pg; (21) 

The term (Xg ^ is a random variable with standard normal distribution and Zg is the 

standard Wiener process. Now we can apply Ito's lemma, and adjust for the rate 

of return, to find 
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K + 0.5 a, — + r S — = 0. (22) 
dt dS^ dS 

For a comprehensive explanation of how this equation was arrived at, see Black 

(1976). Equation (22) is the law of motion describing how futures price changes 

as livestock numbers change, and as time changes. The boundary value 

conditions are 

QDliF,pSj) = c, Sl' F,'}' (23) 

= 0. (24) 

The first boundary condition states that the futures price at settlement must be 

consistent with the demand equation. The second states that if livestock numbers 

are zero, then the livestock economy has collapsed and there is no demand. 

Solving (22) subject to (23) and (24), we find 

Ï, -I. iV'iTXirW'sV-o (25) 
SD, = c, S," f,;'e '' . ^ ' 

At any time between planting and harvesting, the futures price Fj t must be 

consistent with the index, S„ and the quantity QD;"^. The expression 

^ The problem may also be viewed as a discrete process with two dates of interest. 
These are the date that planting and hedging occurs, and the date that harvesting and hedge 
lifting occurs. From this perspective, output is not a geometric Brownian process, but rather 
an initial condition at planting that has an associated lognormal distribution at harvest. 
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(y;r+0^(^)(r,-«i)"jl(r-O 
e 

is an actuarially fair premium on the futures price due to price uncertainty and 

the nonlinearity of demand. Fischer (1975, p 513) provides a good intuitive 

explanation of how this phenomenon arises from Jensen's inequality. 

We now have supply, (16) and (17), and demand equations, (25), for both 

corn and soybeans. As the supply decision is taken at planting (t = 0), the 

equations should be solved at t=0. Using (5), (11), and (12), we can now work 

back to find the equilibrium acreage allocation (A,, A^y, Ap). Finally, we have 

the expected cost to goverimient 

CG = (0.85 - (26) 

where F^' is the rational expectations equilibrium corn futures price. 
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6. THE MARKET MODEL WHEN SUPPLY IS UNCERTAIN 

In the previous section, we have shown how to value government cost when 

demand is uncertain. One of the more distinctive features of agricultural 

production is the uncertainty of supply. In this section, we will extend the model 

to incorporate output uncertainty'. 

Like the settlement price, output is observed only once. However, through 

the futures price, the market makes explicit its expectations of settlement price. 

This does not occur for output. Nonetheless, there are analysts capable of 

summarizing météorologie and other data into a stochastic process describing 

probable harvest output. For a more empirical discussion on the relationship 

between the crop output distribution and the price distribution, see Thompson 

(1982, 1986). 

The stochastic process describing harvest output is denoted by Qj ^ where t 

denotes a time index initialized at 0 for planting and T for harvest date. We 

assume that the process has initial conditions described by the number of acres 

planted 

Here Qj q is the exponential of the expected value of log of harvest output. 

Equation (27) may alternately be viewed as the mode of the lognormal output 

' The model can be solved with both supply and demand uncertainty but the only new 
element, correlation between the shocks, does not justify the amount of math involved. 
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distribution. It then exhibits geometric Brownian motion with zero drift, i.e. 

dQi = Qi Of Q dz, Q. (28) 

The constant OjQ in (28) is the annualized standard deviation of the 

instantaneous rate of change in expected output while 

^i,Q = *4/ (^0°^ (29) 

where Hj , is a random variable with standard normal distribution, and Zj q is the 

standard Wiener process. We must now distinguish between actual supply, Qj j, 

and the initial condition, Qj q. 

From the producer's perspective, the initial condition is the only control 

variable. He/She can choose only Aj which, through (27), determines Q|_o. The 

supply side relationship previously established between Qj_o and Fj o in equations 

(16) and (17) does not change. This is because at t = 0, (16) and (17) represent 

output predictions given the number of acres planted. At planting time, there is 

a perfect mapping between acres planted and expected output. At later times, 

because of output uncertainty, this relationship ceases to be perfect. To establish 

the demand side relationship, we need first to value the crop. 

Suppressing Sj in (18), we find 

Thus, at harvest the value is 
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(30) 

where V;(.) is the value of crop i. 

One of the consequences of assuming that absolute own-price demand 

elasticities are constant and less than one, is that the value of output is zero 

when the futures price is zero. If the absolute values of demand elasticities were 

greater than one, this condition would not hold. Thus, we have 

i.e. the value of the crop when F; ^ = 0. Note that because output is assumed to 

be lognormally distributed, and because the own-price elasticity is constant, 

futures price must also be lognormally distributed. Specifically, futures prices will 

evolve over time according to geometric Brownian motion. If the standard 

deviation of the log of futures price is Oj p, then 

This can be seen from the reasoning behind (19). An Ito's lemma expansion of 

Vj(Fj t) using Black and Scholes method gives 

When we solve this and impose the boundary value conditions, (30) and (31), we 

get 

= 0) = 0, (31) 

(33) 
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n^i,) = c, e (34) 

To develop a relationship between futures price and output, when output is 

lognormally distributed, assume that individual output is strictly proportional to 

national output®. From the geometric Brownian motion of Qj and from the 

functional dependence, 

(35) 

We apply Ito's lemma to get 

^ * 0.5 Q' 4s = 0. (36) 
St ag/ 

As in equation (22), this is the law of motion describing how futures price 

changes with the stochastic process for output, and with time. This is Black's 

(1976) partial differential equation except for the term r Fj which is missing 

because, unlike price, output does not have a trend due to interest rates. 

With boundary value condition 

® We could relax this assumption to: the log of individual output is perfectly linearly 
correlated with the log of national output. Losq (1982) makes this assumption. Alternately, 
we could permit imperfect correlation by incorporating CAPM risk pricing. Both relaxations 
complicate the model unduly. 
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and using a, p = Oi q/Çî, we solve to get 

Qij, = e -I, (37) 

Evaluate at t = 0 (planting time) to get the mode of the output distribution, Qj q. 

From (27) we know that the producer has control of the mode of output. Divide 

crop value (equation (34)) by Qj q to get a value (price) per unit of this concept 

of output, 

This price is lognormally distributed with variance of the logs equal to 

All the uncertainty has now been transferred, symbolically, onto price. 

Expression (38) can be viewed as a shadow price; the price a risk neutral or 

well-hedged risk averse individual responds to when allocating land to crop i. If 

Cj > 0, then the shadow price is less than the discounted expected futures price. 

This is because Çj > 0 implies a negative correlation between output and price, 

and so the expected revenue is less than the product of expected price and 

expected output. When there is no output uncertainty, then the producer 

responds to the price e''^, which arises in (13), (14), and (15). 

We return to equations (13), (14), and (15) in the production decision. 

(38) 
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Evaluating at planting and replacing with (38), we map 

(39) 

Gj - = (0^ - a) W(P^F,^). (40) 

and 

G, - AT, = {F,, «1-''"^'-'"^ - b,}k, « (1 * d). (41) 

Note that the formula for W(Pg,Fç o) as expressed in (2) does not change, 

because the quantity of puts granted by the government is fixed. We complete 

the system as before to get expressions for Q^q in terms of „ and Qg^.o in terms 

of Fgb,o- We now have four equations in four unknowns, {0^0, F^o, Qsb.o» Fsb.o)-

We solve the system 

Qcfi ^ 
N, (42) 

(43) 

Qcfi = Cc ^c,o' e 
-«c r (44) 
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sb "sbfl " » 
(45) 

by substituting out Q^ o and Q^ g, and then using numerical methods (GAUSS 

1988). Then we find {A^, A,, Ap} from (46), (47), and (48). 

=^0 ~^sb -^c (46) 

+ ( 1 - «M» = 
\/d 

(47) 

^sb = 
N,N, 

i/d 
(48) 

The equation for cost to government, CG, is (26) as given previously. 
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7. IMPLEMENTATION 

We have yet to specify the model's parameters. In a survey of the 

literature, Hoag et al. (1993) reported that estimates of slippage coefficients vary 

from - 0.25 to - 0.58. We will assume that it is equal to - 0.35 for both crops. 

The k] are productivity coefficients and will change over time. Their value was 

arrived at using a log-log restricted seemingly unrelated regression system, the 

details of which are outlined in Appendix 1. Adjusted to 1993, the estimated 

coefficients are kg = 4.5915 x 10® and = 1.375 x 10®, where output is 

measured in bushels and area is measured in million acres. We find c,, and c^y, 

the constant terms in the demand equations, using a log-log restricted seemingly 

unrelated regression system. The system is outlined in more detail in Appendix 

1. The estimated time and inflation adjusted coefficients are c, = 9.7316 x 10^ 

and Cgb = 3.6858 x 10'. We assume that variable costs, b^ and b^y are constant 

and equal to those available for Iowa in 1993. These costs are $1.08 per bushel 

for corn and $2.11 per bushel for soybeans'. The per acre base yield is assumed 

to be the national average of 105 Bu/acre (U.S. Feed Grain Council 1993). We 

assume that there are 76.62 million effective corn base acres^". 

' "Estimated Costs of Crop Production in Iowa, 1993." Iowa State University, University 
Extension, Ames, lA. 

The American Soil Conservation Service (ASCS) reports corn base acres for 1993 as 
82.2 m acres (USDA 1993). However, over previous years the maximum participation rate 
was 90.5 percent in 1987/88. To allow for the participation disincentive of payment limits, 
we assume a maximum participation rate of 92 percent. Payment limits are $50,000 and 
$75,000 per farm for deficiency payments and total payments respectively. 
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Marcus and Modest assume a zero basis and use, as we do, absolute own-

price demand elasticities of 0.3 and 0.4, respectively, for com and soybeans. 

These figures are from George and Kirby (1971) and are consistent with more 

recent estimates (Rojko et al. 1978; Collins 1985). The implied volatilities, o^ p 

and Og(, p, are assumed to be 0.2241 for com and 0.1575 for soybean as imputed 

from the Black formula and April 16, 1993 option prices for September at the 

money contracts. The interest rate is assumed to be 0.06 (6 percent), the prime 

rate in April 1993. 

We solved the model for CG as the government parameters (a, Pq) change. 

The results are presented in Figure 1. There are three regions: for Region 1, Pq 

for any a is so low that no one participates in the program; Region 2 is where 

some, but not the maximum, allowable acres are planted; and Region 3 where Pq 

for any a is so high that all base acres are signed into the program. Notice how, 

at a given set-aside rate, cost rises at an increasing rate with P^. This is because 

when everyone has entered the program, an increase in Pq no longer reduces 

plantings. Reduced plantings increase the futures price which, in turn, reduces 

the government cost. 

Using the actual spring 1993 target price of $2.75 and set-aside rate of 10 

percent, we estimate the spring 1993 expected cost of the corn program to the 

government to be $3.606 billion. This value is indicated on Figure 1. To the 
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extent that our assumptions are valid, the government could use Figure 1 to 

consider the costs of alternative program parameters. Table 1 contains some 

the model output. 
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Program cost 
(Billion $) 

9ar 

MS -

$3.61 Billion 
SJM 

Target price &* ,« .XT \  \  0^1,  
Set-aside rate 

ijm ojm 

Figure 1. Expected government cost of corn target price program. 
NOTE: Arrows show 1993 program parameters and expected costs. 
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Table 1. Summarized model output 

a Po CG F, Q, F, Q, Ap A, 

Bill'n Bill'n Bill'n Mill'n Mill'n Mill'n 
$ $ bushels $ bushels acres acres acres 

0.00 1.60 0.102 1.94 8.01 4.63 2.00 75.62 5.67 61.71 
2.10 1.483 1.94 8.01 4.63 2.00 75.62 5.67 61.71 
2.60 4.384 1.94 8.01 4.63 2.00 75.62 5.67 61.71 
3.10 7.631 1.94 8.01 4.63 2.00 75.62 5.67 61.71 

0.08 1.60 0.00 1.94 8.01 4.63 2.00 0.00 81.29 61.71 
2.10 0.829 2.08 7.84 5.05 1.93 75.62 9.20 58.18 
2.60 3.137 2.08 7.84 5.05 1.93 75.62 9.20 58.18 
3.10 6.037 2.08 7.84 5.05 1.93 75.62 9.20 58.18 

0.16 1.60 0.00 1.94 8.01 4.63 2.00 0.00 81.29 61.71 
2.10 0.314 2.09 7.86 5.08 1.93 33.65 51.15 58.19 
2.60 2.018 2.26 7.66 5.55 1.86 75.62 12.39 54.99 
3.10 4.485 2.26 7.66 5.55 1.86 75.62 12.39 54.99 

0.24 1.60 0.00 1.94 8.01 4.63 2.00 0.00 81.29 61.71 
2.10 0.056 1.97 8.00 4.74 1.98 4.54 77.92 60.54 
2.60 1.157 2.36 7.56 5.86 1.82 62.58 26.79 53.43 
3.10 3.128 2.45 7.47 5.86 1.79 76.62 15.63 51.75 

0.32 1.60 0.00 1.94 8.01 4.63 2.00 0.00 81.29 61.71 
2.10 0.00 1.94 8.01 4.63 2.00 0.00 81.29 61.71 
2.60 0.741 2.22 7.70 5.46 1.87 33.84 53.60 55.56 
3.10 1.964 2.57 7.37 6.45 1.75 66.44 26.43 50.13 
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8. CONCLUSIONS 

U.S. grain policies have recently changed so that deficiency payments are 

paid on historical rather than actual production. This virtual decoupling of 

production and policy allows us to place an exact value on the benefits to 

producers. This value depends on the current price of a put option with strike 

price equal to the announced target price. The cost of the program to producers 

is the income foregone on the acreage which must be set aside to meet program 

requirements. This cost will vary from producer to producer. Quantifying the 

cost requires information on the individual's land quality distribution. If this 

information were available, and if one assumed that producers make rational 

participation decisions, then one can predict the sign-up rate for any given set of 

program parameters. When producers join the program, they agree to take land 

out of production, which in turn reduces national production. Expected changes 

in national production influence the futures price, and in turn the benefits of 

program participation (through the option price). We have shown that the 

system described above is closed and, given the technologic and distribution 

assumptions made, that there is a unique set of outputs, prices, and participation 

rates for each set of program parameters. Closure allows us to calculate the ex 

ante cost to the government of any given set of program parameters. We 

demonstrate the procedure using 1993 price data and we show how expected 

government cost increases with an increase in the target price, and decreases with 

an increase in the set-aside rate. 
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APPENDIX I 

Using USDA annual data (U.S. Feed Grains Council, 1993) for the twelve 

crop years 1980/81 to 1991/92, we estimate the log-log production system arising 

from (7) to get 

Ln(Qe) = 19.805 + 0.01076 t + 0.65 Ln(A,) + e, (49) 

(194.8) (0.78) 

Ln(Q^) = 18.6 + 0.010701 1 + 0.65 Ln(A,b) + e,y (50) 

(351.9) (1.49) 

where 

Qi = national output for crop i (bushels); Aj = land sown to crop i (m 

acres); 

e; = error term for crop i; and t = year - 1980. 

Adjusted for time (adjusting to 1993), we arrive at the coefficients k,, and Iq^ in 

the text. For demand, we again use USDA annual data (U.S. Feed Grains 

Council, 1993) for the twelve crop years 1980/81 to 1991/92 to estimate the log-

log system arising from (18) with Sj suppressed 

Ln(QDg) = 23.141 + 0.010201 1 - 0.3 Ln[F, x /CPI] + u, (51) 

(192.8) (0.72302) 

Ln(QD,b) = 22.61 + 0.0097907 t - 0.4 Ln[F,i„T/CPI] + u,y (52) 

(354.5) (1.3578) 

where 

QDj = total use of crop i (bushels); Fj j = crop i farm price at harvest 
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($/bu); 

CPI = consumer price index (1985 = 1.00); Uj = error term for product 

and 

t = year - 1980. 

Adjusting for time, we arrive at the coefficients c^, and c^ in the text. 
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ABSTRACT 

Evidence is presented that suggests options markets are not optimal. An 

alternative market structure is proposed that would increase hedging 

effectiveness, and the risk return tradeoff for hedgers and speculators, 

respectively. Fewer derivative markets would be required per underlying asset 

than with options markets. The settlement price of these alternative markets 

would be some power of the closing futures price. 
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1. INTRODUCTION 

To accommodate movements in the price of the underiying asset, options 

markets, as they are currently structured, require trading for both puts and calls 

at several strike prices. The need for multiple interdependent options markets 

per asset reduces liquidity, and by extension the number of markets that can be 

covered by options. Were it possible to replace these multiple options markets 

with a single independent derivative, then liquidity and market coverage would 

expand. For example, at any one time more than 20 crude oil futures trade, with 

expiration months stretching out three years. Active options markets typically 

operate only on the three closest to maturity futures, with, at most, six active 

strike prices per contract. Therefore, although 36 separate options prices are 

quoted on crude oil, options do not trade on most crude oil contracts. 

Among those options that do trade, measured implied volatilities have been 

found to relate in a systematic way to the time to maturity and degree of 

moneyness (Whaley 1982; Day and Lewis 1988; Stephen and Whaley 1990; Choi 

and Shastri 1989; MacBeth and Merville 1979). One possible explanation for the 

mispricing of out of the money, and far from maturity options, may be the 

relatively thin markets that exist for these contracts. 

The markets response to the problem outlined above is the development of 

customized options. These options are written by brokerage houses to satisfy the 

individual needs of large investors, and have been so successful in drawing 
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liquidity from standardized options markets, that the Chicago Board Options 

Exchange (CBOE) has initiated a program to customize contracts for other 

investors (Wall Street Journal 1993a). Over the first three months of trading, 

they have proven to be very successful (Wall Street Journal 1993b). 

One alternative to customization of options contracts would be a contract 

whose settlement price is some (power) function of the underlying asset price, 

rather than the difference between the asset price, and some arbitrary strike price 

as is currently used. For reasons that will later become obvious, we term these 

alternatives polynomial contracts. The purpose of this paper is to explore 

polynomial contracts as an alternative (or supplement) to existing options. One 

benefit of polynomials is the one-to-one linkage between the polynomial price 

and the asset price, thereby eliminating the need for multiple strike prices, and 

separate put and call markets. A second benefit is the replacement of a market 

structure that forces a discrete choice among strike prices, with a structure that 

provides a more flexible approximation to the optimal pay-off function. 

We begin with a description of polynomial contracts. Then we show that 

polynomial contracts evolve as a theoretically acceptable solution to a 

maximization problem where hedgers and speculators maximize utility by 

choosing among market structures, rather than the more traditional approach 

where agents choose optimal positions given a fixed market structure. Then, by 

means of Monte Carlo experimentation, we show that markets in and of 

maturity prices come very close to spanning the state space. We also show the 
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improvement in welfare (by means of certainty equivalent returns) that results 

from the move from options to polynomial functions. Finally, we provide a fair 

pricing formula for a class of polynomial contracts. 
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2. PREVIOUS WORK 

There exists an enormous body of literature concerning hedging with futures 

and options. Some of the work used mean-variance analysis (Wolf 1987). 

Hedging under the less structured expected utility framework has also been 

considered (Lapan et al. 1991; Benninga et al. 1984). Benninga et al. derived the 

optimum hedge ratio when today's futures price is an unbiased predictor of the 

futures price in the next period, and when the basis is independent of the spot 

price. Lapan et al. showed that under the Benninga et al. conditions, there was 

no hedging demand for options. However, if either futures or options are biased, 

then optimal hedging may involve options. Moschini and Lapan (1993) showed 

that options may be used when there are quasi-fixed inputs. 

There is another literature that deals with the adequacy of existing hedging 

instruments. Arrow (1964), in his seminal paper on risk bearing, established the 

concept of a complete set of contingent claims markets. Such completeness exists 

when a payout in any state, and only in that state, is possible. In the absence of 

transaction costs, this completeness is a necessary pre-condition for efficient 

equilibrium to exist under uncertainty. A set of options markets with a 

continuum of strike prices provides completeness. Hahn (1971) showed that, in 

the presence of transaction costs, completeness was not necessary, and in fact, 

may be detrimental to efficiency. If transaction costs are allowed for, an infinity 

of contingent claims markets cannot be supported, and an optimal set must be 

chosen. 
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Ross (1976) has shown that a small number of options can provide a very 

diverse range of payout possibilities. He established the concept of a portfolio of 

assets called the efficient fund. Options written on such a fund provide the same 

range of opportunities as options written on the individual assets. Ardetti and 

John (1980) demonstrated that, when the state space is finite, the probability of 

an arbitrary portfolio being efficient differs from one by an infinitesimally small 

number. Nachman (1986) showed that when distributions of asset returns are 

continuous rather than discrete, no efficient fund exists. Duffie and Shafer 

(1985) showed that for incomplete markets, equilibrium will exist except on a set 

of measure zero. Schachter (1986) proved that in the absence of transaction 

costs, the introduction of an option market at a new strike price caimot reduce 

welfare in the Pareto sense. 

Work has also been done that options may be optimal approximating 

instruments. Hauser and Bales (1986), among others, suggest Fishburn's (1977) 

target deviation utility specification as a motivation for the use of options as 

hedging instruments. While Holthausen (1981) has shown that Fishburn's model 

satisfies the non-Neumaim-Morgenstern expected utility axioms, the model labors 

under some of its attributes. It holds that marginal utility, below a known critical 

level of income, bears no connection with marginal utility above this critical level. 

The reasoning is that there exists critical disaster levels of returns such as 

bankruptcy or starvation. However, as a disaster looms, economic agents will 

usually be able to take action to escape. For example, firms will reduce the work 
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force, salaries or dividends, or enter Chapter 11. Another problem with 

Fishburn's model relates to the issue of defining the critical value. Associated 

with any particular production level, there is one critical price. However, if 

production or other prices are uncertain, there will be a range of critical prices. 

In addition, even if there are specific circumstances for which options are 

optimal, there is no guarantee that these circumstances are common. 
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3. POLYNOMIAL CONTRACTS 

A pofynomial contract with index i, and expiration date T, is a binding 

commitment to pc  ̂on the expiration date, the price on that date raised to the i™ 

p o w e r ,  P t  

Polynomial instruments could be written on the underlying price or on 

futures prices. Their contract specifications would be identical to those of 

existing options except in the functional form of the payoff. They would have 

expiration dates and could be traded both long and short. 

We see a compelling connection between the econometric approach of 

flexible functional forms, and the demand for contingent claims. 

Econometricians have focused on polynomials, in part, because of their well-

known approximation properties. A fundamental theorem of real analysis, the 

Weierstrass theorem (Royden 1988), shows that on a closed interval, the set of 

polynomial functions can generate a linear combination which converges 

uniformally to any continuous function. While the set of polynomials is not the 

only set with this property, polynomials are known to have impressive properties 

in Banach spaces (Cheney 1966; Acheiser 1956). Essentially their flexibility 

ensures that they can approximate a large set of functions and accommodate a 

whole variety of error measurement criteria. Because of the nondifferentiable 

points that comprise the points of extreme deviation when options are linearly 
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combined, convex-error measurement criteria will penalize option-based linear 

approximations. 

One may wonder whether polynomials can adequately approximate positions 

that can be generated with options, but bear in mind that options positions may 

themselves be only approximations to optimal positions. However, for the 

moment, consider some typical options positions as being optimal. Figure 1 

shows how versatile polynomials are. They can be used to approximate all 

popular options positions. The long straddle can be approximated using two 

polynomial contracts, and the vertical bull spread requires three polynomial 

contracts. In each case, an equivalent number of options markets are used, i.e., 

the sandwich spread requires four separate options transactions, the purchase of 

two calls, with a middle strike price and the sale of puts with a low strike price 

and a high strike price. However, the three strike prices required to create a 

sandwich spread represent a total of six options markets as puts and calls are 

traded on each strike price. Thus, the total number of polynomial markets 

required to replicate these positions is, in all cases, lower than is currently used. 

In the next sections, we will provide some theoretical situations where 

polynomials have appeal. We will consider hedging when inputs are flexible, 

hedging when output is uncertain, and the use of contingent claims to speculate. 
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CALL LONG STRADDLE 

VERTICAL BULL SPREAD SANDWICH SPREAD 

p 

Figure 1. Replicating existing options positions. 
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4. OPTIMAL INSTRUMENTS FOR HEDGERS 

Let 7t(P) be the profit function. Let K(P) be the optimal payoff function, i.e., 

at a given price realization, P, the desired payoff from financial instruments is the 

value of K(P). Let f(P) be the market's perception of the price density function. 

Then the fair market value of any payoff function H(P) is 

= J H(F) m dP. (1) 
0 

Restrict the set of payoff functions to measurable functions G. The investor 

chooses from G the function K(P) such that 

E^n(P) + K(P) - i E/J[n(P) - (2) 

where H(P) is any other measurable function and EfU[-] is the expectation of 

utility with respect to the density function f( ). The profit function is convex in 

price (Chambers 1988)." Substitute into (2) above so that the optimal payoff 

function is that choice of H(P) which maximizes 

EUlitiP) + H(P) - MJ. (3) 

This suggests a strong relationship between the optimal payoff function, K(P), 

and it(P). 

"Lapan, Moschini, and Hanson have shown that expected utility maximizing hedgers 
will not use options unless the optimal payoff function is nonlinear in output prices. 
Possible reasons for this nonlinearity include quasi-fixity of inputs, yield uncertainty, and 
non-myopic expectations formation. 
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Proposition: Assume that there are no transaction costs and that financial 

markets are unbiased. Then for a risk averse producer the optimal payoff 

function is equal to the negative of the restricted profit function. 

Proof: From the concavity of U(') and from Jensen's inequality 

Ul £[)I(P)] } k £{ U[ic(P) + Ç] } (4) 

where (is a random variable with mean zero. Due to unbiasedness, the 

difference between any payoff function and its cost will be a random variable 

satisfying the conditions for (. In particular, the expression 

E [ii(P)] - u{P) 

satisfies the conditions for (. Replace i by E[ii(P)] - tc(P) to find that (4) is 

satisfied with equality •. 

If K(P) can be synthesized through existing financial instruments, then 

allocation of resources is efficient in the Arrow-Debreu sense (Arrow 1964). 

However, to ensure liquidity, an approximation of K(P) may be necessary. The 

approximation could be, for example, a Taylor's series local approximation 

(TSLA) 

K'iP) = «0 + a/ '' + + ^^36 (5) 

where when b = litis the conventional Taylor's series expansion. Polynomials, 
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as do most options positions, tend eventually toward infinity. We may wish to 

control the rate by specifying that 0 < b < 1. The coefficient a., is trivial, and 

may be ignored. For the TSLA, and assuming the absence of bias, the FOC w.r.t 

ai, ag and ag are 

Ef{U'{'n)[P - Ef{P)]) = 0 (6a) 

Ef{U'{7i)[P^ - EfiP^)]} = 0 (6b) 

E^{U'{ti)[P^ - Ef{P^)]} = 0, (6c) 

where EX ) denotes expectation with respect to the density function f(P). Solve 

for aj, a2 and a^ to get K*(P), the approximation to K(P). 

K\P) = a^P + + g/3 

It can be seen that the nonlinearity of the restricted profit function leads to 

optimal payoff functions that are also nonlinear in prices. Options contracts, as 

they are currently structured, have payouts that are piece-wise linearly related to 

the maturity price, and may not be as suitable to hedgers as contracts whose 

value depends on some power of the closing price. The power of polynomials to 

approximate nonlinear functions is well known. It points to the possibility that 

one or two carefully chosen polynomial contracts may provide a better 

approximation to the optimal payoff function than existing options contracts. The 

choice of these polynomials and the extent to which they might dominate existing 

options is presented in Section 4. 
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We next turn to the issue of hedging when output is uncertain. While output 

is observed only at harvest, futures markets will continually impute a measure of 

expected output from planting levels, weather data, and other relevant 

information. Denote by Q„ the process that the markets impute as output. 

Proposition: Let aggregate output, Q^, be lognormally distributed. Let the 

absolute price elasticity of demand, be constant, and let quantity uncertainty be 

the only source of price uncertainty. Consider a risk averse producer whose 

individual output, qj, is uncertain but who knows that the percent change in 

individual output bears a linear relationship with percentage change in aggregate 

output^^ 

q ^ = k  G ; .  ( 7 )  

If we assume that the basis is always zero, and that k and n are constants, then 

this producer always desires a nonlinear hedge. The optimal hedging instrument 

is a contingent claim in a power of the harvest date price, and this power value is 

i - S n -

Proof: In the absence of basis risk, we know that harvest date futures price, 

Fj, equals harvest date cash price, Pj. Because quantity uncertainty is the only 

source of price uncertainty, the futures price at time t < T is a function only of 

^^Losq (1982) and Sakong et al. (1993) consider the optimal hedge with options under 
this scenario. While they study the best hedge given existing instruments we optimize over 
market structure. 



www.manaraa.com

81 

time to maturity, and the knowledge at time t, of the statistical properties of Q^. 

Treating Qx as a hypothetical security, which diffuses stochastically over the 

growing season, and using the lognormality assumption, it can be shown that at 

any time the following partial differential equation holds" 

^ + 0.5 = 0, (8) 

where Oq is the instantaneous variance of the log of Q,. 

Because the demand elasticity is constant we can develop the boundary value 

condition 

Ft = (9) 

where k^ is the constant of proportionality entering the demand equation. The 

other boundary value condition is 

UniQj^, = 0. (10) 

Solving (8) subject to (9) and (10) we get 

p = (11) 

Rearranging we obtain 

^^is p.d.e was developed by Marcus and Modest (1986). See Constantinides (1978) 
and Fisher (1978) for a discussion on hypothetical securities. 
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(12) 

Because Q, is lognormally distributed, so too is q,, 

q, = kQP = (13) 

This is because a lognormally distributed variable raised to a power is also 

lognormally distributed. From (13) we can see that at planting time (t = 0) the 

stochastic revenue function faced is 

Thus, to hedge completely, the producer will sell forward k kj'' 

contracts in a contingent claim on the l-n( power of the harvest date futures 

price, i.e., an instrument that pays off 

The result derived above can easily be extended to where the relationship 

between individual and aggregate production is 

where a^, ai,...,ni, n2,...are constants. As the absolute value of demand elasticities 

for agricultural goods tends to be in the range [0.05, 0.5], and r\ is comparable to 

(14) 

(15) 
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P in the Capital Asset Pricing Model, the expression (1 - nS) will usually be 

positive and probably less than one. Thus, under these conditions, producers will 

demand polynomials with powers in the range (0, 1). 
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5. OPTIMAL INSTRUMENTS FOR SPECULATORS 

Now consider the case of bias in expectations. Let the individual's 

subjective assessment of the price distribution be described by the density 

function s(p). To focus on speculation, the hedging motive is removed by 

specifying the problem in a pure lottery framework. In this case the goal is to 

choose from the set of all measurable functions, denoted by {G(P)}, the 

measurable function K(P) that maximizes 

J IJ{G(P) - M^PMP) dP (16) 
0 

subject to Mfj(P) = J G(P)f(P)dP 
0 

where f(P) remains the markets perceived density function. The solution, K(P), 

is not unique because functions that differ on sets of measure zero also maximize 

(16). It may be considered unique up to an equivalence set. A closed form 

solution to K(P) may not be possible. 

Consider the problem of speculation when price is normally distributed^'* 

and where the speculator concurs with the market's assessment of mean, but 

^'*Due to asymmetry, it is more difficult to prove this for the lognormal distribution. 
However, Monte Carlo simulations, provided later in this paper, suggest that an 
asymmetric polynomial position is an improvement upon existing options contracts. 
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believes that variance is higher than the market's assessment.^^ Let and Fj 

denote respectively a futures contract and a contract to pay the square of price 

on a future date on that date. The alternative sets of instruments are {Fj, Fg} 

and (Fi, option with strike price at mean}. 

Assume that the market believes that price has distribution f(P) which is 

N(|x,o^), but that the speculator believes that price has distribution s(P) which is 

N(|i,t^). As both price distributions are synmietric about \i, the best speculative 

position will also be symmetric about (i. Thus on each set of instruments there 

are two restrictions: symmetry and unbiasedness. Consider the polynomial 

position 

K(P) = ao + a^P + a^\ (17) 

Due to unbiasedness on the part of the market 

EjiciQ + â P + «2̂ ]̂ = 0. (18) 

This implies the restriction 

«0 = -"if - «21»^ - «2"^- (19) 

Due to symmetry 

^^Lapan, Moschini, and Hanson have shown that risk averse expected utility 
maximizing individuals facing a symmetric price distribution will use futures to speculate 
on the first moment and straddles to speculate on the second moment. 
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dK{P)/dP\^,^ = g, + 2a2H = 0. (20) 

Thus the position chosen will be of the form 

K(P) = a^(P^ - 2mP + - o2). (21) 

This position could also be arrived at by generating a set of orthogonal 

polynomials. For the normal distribution, such polynomials are called Hermite 

polynomials (Kelly 1967). Now take the expectation with respect to s(P) 

E^[K(P)] = fl2(n^ + - 2v? + \i^ - a^) = - o^) (22) 

The variance of profit is 

VarlProfil] = E^(proflt - EjProfll]f ] ,^3) 
= aiEi(P^ -2vP = OjWl-

To arrive at this result it should be noted that for the normal distribution 

EJ[P^] =11^+ 3\ix\  = »!'*+ 6\x^x^ + 3x\  

Now consider the position of a symmetric straddle about the mean, i.e. 

purchase a put and a call both with strike price p. Using the symmetry of the 

normal distribution, it can be seen that the market price for the put should equal 

that for the call. Denote the straddle by S. It's market price, V(S), is 
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Ki) -2j  IP -  W fiP) dP -  2ProblP > |i]  {E/iP\P > ii] -  |i}  

'EJiP\P>vi -  It 

The mean of a truncated normal distribution is 

Ef[P\P > n] = n + a <K0)/{l-4(0)}, (24) 

where: o = standard deviation of the distribution 
<|>(0) = (2%)^^ = probability density function of the standard normal 

distribution function evaluated at 0. 
0(0) = 0.5 = cumulative density function of the standard normal distribution 

function evaluated at 0. 

The expected speculative gain is the number of straddles purchased times the 

difference between the subjective and market values of a straddle, 

EJiProflt] = 2j[i» - tils(P)dP -20/(2,)») = A,{2(T - «)/(2n)"}. (26) 

Thus, 

K(5) = la/ÇZrtf^ (25) 

I» 

The variance of this gain is 

VarlProfit] = b^E^[i\P -  n|  -2( t - o)/(2nfy] 
= b2EJ[(P - |i)^ - 4 |P - ji I (t - o)/(2w)°'^ + 2(T - a^/it] (27) 

= - 2t^ + 2o^)/w. 

For each set of instruments, it is desirable that the ratio of mean profit to 

standard deviation of profit be high. This ratio, rather than the mean variance 
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ratio, is chosen because it is homogeneous of degree 0 in the money metric. For 

the set of instruments {F^, Fj} the mean to standard deviation ratio is 

(T2 - O2)/[2T'»]""5. 

For the set of instruments {Fj, option with strike price at mean} the mean to 

standard deviation ratio is 

{2(T - o)/(27i)0-5}(ii)0-5/(nT2 - 2T2 + 2(f)0^ 
= (2)"^(T - a)/(7iT2 - 2T2 +2O2)<'-5. 

When T = a, then the ratio is zero because expected profit is zero, but an open 

position ensures exposure to risk. To compare the two sets of instruments, take a 

ratio of the ratios, polynomial position ratio to the options position ratio 

D = (T2 - - 2T2 + (2^% " «)} (28) 
= ( t^  -  o^)(wT^ -  2t^ + 2o^)°-^ /  {2t^ ( t  -  a)}.  

This function is homogeneous of degree zero in t/o. D is not defined when t = 

o. However, when this is the case, we can use L'Hospital's rule. Differentiate 

with respect to x above and below and then evaluate at x = o. We find 

Liw,,, D = = 1.772 > 1. 

When X # o the function may be evaluated. Over the set {x: 0 < x < 1.835 a, x 

# o} D is greater than 1. Thus, the polynomial provides a higher level of 

expected return per unit risk undertaken than options, provided the speculator's 

subjective estimate of the volatility is less than 1.8 times the markets estimate of 

volatility. 
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Again, there is evidence that polynomials could allow today's multiple 

options markets be replaced with a smaller number of polynomial contracts, 

simultaneously increasing the usefulness of the markets to speculators. A 

measure of what the optimal contract would be and the degree to which 

participants would benefit, is discussed in the next section. 
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6. MONTE CARLO SIMULATIONS 

The theoretical exercises reported on in Sections 2 and 3 can never be 

completely convincing. This is true because one could always find a particular 

situation for which existing options markets provide a perfect payoff. It is easy to 

see that, to formally solve for a socially optimal set of contingent contracts, we 

must specify a mass density on each of all possible optimal payoff functions, and 

then specify a social welfare function aggregating the welfare of individuals. 

Nevertheless, these results indicate that, for at least some hedgers and 

speculators, suitably constructed polynomials would increase welfare. The 

purpose of this section is to report on Monte Carlo simulations to determine the 

extent to which these markets would improve on existing markets. The first set 

of simulations compares polynomial and existing options for a typical hedger. 

The second makes the same comparison for a speculator with private 

information. 

Hedger Simulations 

The simulations for both hedgers and speculators are based on a similar 

procedure. First, the economic situation is laid out. Optimal positions are then 

compared across market structures using certainty equivalent returns. This 

procedure essentially measures the point at which the indifference curve between 

risk and return that passes through the optimal position intersects with the y axis. 

As long as risk-return indifference curves do not cross, orderings of alternative 
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outcomes found using this procedure are consistent with utility maximization. 

The procedure is performed for an individual with a CARA utility function with 

low and high degrees of risk aversion. The procedure is further discussed in 

Appendix 1. The results presented in Table 1 compare the certainty equivalent 

returns (CERs) across a range of market structures. The first column considers a 

"no financial markets" scenario while the second column considers where futures 

only exist. The third, fourth and fifth columns consider a two market situation. 

In each case there is a futures market while the second market is, respectively, a 

contingent claim in P* and an option at the mode of the price distribution. 

Note that the latter can alternatively be viewed as a three market situation where 

there is both a put and a call at the mode. The final two columns compare the 

CERs for an individual who must trade contracts in blocks of 1,000 and 5,000 

bushels (columns 6 and 7), rather than the single bushel contracts that are 

implicitly assumed in columns 1 through 5. These last two columns are included 

because, from the perspective of the hedger, a primary benefit of the polynomials 

is the movement away from the discrete choices associated with strike prices. 

Therefore, a valid comparison of the benefits gained from changing market 

structure is the CER change associated with standardized contracts. The tables 

do not measure the additional benefits that would arise if polynomials permitted 

a reduction in the number of markets available, and so, through increased 

liquidity, reduced the bid-ask spread. 

The hedger considered is a 1991 Iowa soybean producer. This was the last 
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year for which published costs and returns were available. A restricted translog 

profit function was reconstructed using 1991 Iowa soybean production costs and 

returns.^^ Because output prices vary considerably and because we wish to use 

a property of the translog restricted profit function that is valid only at the mean, 

we considered total economic cost per acre rather than actual crop value per 

acre. Total economic cost per acre is imputed by placing a fair charge for equity 

capital and unpaid labor. Total economic cost per acre was $243.06 while per 

acre variable cash crop expenses amounted to $145.62. The translog restricted 

profit function, for a single output, is of the form. 

n = ExpIoq + «1 ln(p) + % (ln(p))^ + SJli 6, ln(w,.) ^29) 

+ % EJli 2^1 bfj ln(w,)ln(M/y) + c, ln(p)ln(iv,)] 

where n = profit and p, Wj are the output price and input prices, respectively. 

This may be considered as an approximation that is strictly valid only at the 

point of expansion. This point is where the log of prices is 0. At this point the 

share of output in restricted profit is a^, and the own price output elasticity may 

be evaluated as 

Bji = «1 - 1 + —. (30) 
«1 

If the input prices are known with certainty, and if a^ and a^^ are known, then we 

know the shape of the function which is the optimal contingent claims position. 

161991 Farm Costs and Returns, Iowa State University, University Extension, 
Ames, Iowa. 
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We take a soybean own-price supply elasticity, 0.4, from the literature 

(George and Kirby 1971), and using the previously stated farm economic cost and 

variable cash crop expenses we arrive at 

= (S243.r«45.62) ' 

" ®i) - -2.73008. (32) 

The ag coefficient is chosen to scale profit up to a level representing a large 

soybean producer. We assume that such an operation would generate a gross 

profit of around $100,000. An a^ value of Ln (100,000) generates a gross profit 

of approximately this magnitude. We assume that this is the profit function faced 

by a producer who places hedges on April 16, 1991, and lifts them upon contract 

expiration in November 1991. Integrating the profit function with respect to the 

density function imputed from contingent claims prices, we find expected profit to 

be $102,991.4. 

The mean of the lognormal distribution was calibrated so that expected 

settlement price is equal to the futures price. The variance is imputed from the 

Black (1976) formula using April 16, 1991 prices, the prime interest rate, and a 

close to the money call (600 c/bu). 

The most striking feature of the results presented in Table 1 is the increase 

in CER when futures markets are introduced. This is particularly true for the 

risk averse individual. Once producers have hedged the bulk of their price risk, 

options and polynomials are used to refine the hedge. This refinement is needed 
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Table 1. 1991 Certainty equivalent returns for a Spring hedge on Iowa soybean 
farm. E[n] = $102,991.4, o = 0.1915, n = 100,000 Exp[2.4944581 
Log(P/6.085489) - 0.5 (2.73008)Log(P/6.085489)2] 

Risk Discrete Discrete 
Aversion No Futures Futures Futures Futures Futures Futures 
Coeff Futures Only Option 1,000 bu 5,000bu 

0.00003 $86,675 $102,952 $102,953 $102,954 $102,952 $102,951 $102,937 

0.00008 $69,175 $98,235 $102,807 $102,861 $101,307 $98,066 $97,399 

due to nonlinearities in the profit function which cannot be hedged with linear 

futures contracts. In the absence of nonlinearities, neither options or polynomials 

would be used (Lapan, Moschini, and Hanson 1991). The increase in CER for 

hedgers depends on the degree of risk aversion. For low risk aversion, the 

futures market is sufficient to hedge effectively; but, at higher risk aversion, 

nonlinear contracts have a place. The polynomial contracts fare well in 

comparison with the existing options markets in the example. The increases in 

CER among the various options polynomial contracts is not large when compared 

to the $100,000 expected profit. However, when we compare the benefits of 

polynomials with the increase in CER when we go from futures denominated in 

5,000 bu to customized futures contracts ($97,399 versus $98,235), the increase in 

CERs with polynomials is more impressive. 
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Speculator Simulations 

Table 2 replicates the simulations performed in Table 1 for a speculator 

seeking to take advantage of private information on the moments of the price 

distribution. All of the speculation results involve positions set on April 16, 1993, 

and lifted on expiration of the November 1993 contract. The CARA utility 

Table 2. Certainty equivalent returns for Spring 1993 speculation with soybean 
contracts 

Risk Infor- Discrete Discrete 
Aversion mation No Futures Futures Futures Futures Futures Futures 
Coeff Gap Futures Only pOJ P" Option 1,000 bu 5,000bu 

0.00003 1.25|i $0 $55,652 $56,013 $56,006 $55,964 $55,652 $55,621 
fi/1.25 $0 $55,524 $56,013 $56,011 $55,957 $55,523 $55,465 
1.25o $0 $12 $1,676 $1,408 $1,283 $12 $0 
a/1.25 $0 $12 $1,888 $1,216 $1,649 $11 $0 

0.00008 1.2S|i $0 $20,869 $21,004 $21,002 $20,986 $20,869 $20,848 
(1/1.25 $0 $20,821 $21,004 $21,004 $20,984 $20,821 $20,794 
1.25a $0 $4 $628 $528 $481 $0 $0 
0/1.25 $0 $4 $937 $456 $618 $2 $0 

function is again used and the risk aversion coefficients are as in Table 1. 

Because initial wealth does not matter for the CARA function, the results are 

presented as changes in CERs. The same seven market structures are considered 

as in Table 1. For each of the risk aversion coefficients, there are four 

information divergences. In each case, a 25 percent difference between the 

market and the individual's opinion is considered. Case 1 is where the 
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individual's assessment of the mean of the log of price is 1.25 times the market's 

assessment. Case 2 is where the individual's assessment of the mean of the log of 

price is 1/1.25 times the market's assessment. Cases 3 and 4 are where the 

individual's assessment of the volatility of the log of price are 1.25 times the 

market's assessment and 1/1.25 times the market's assessment, respectively. Note 

that, whereas in Table 1 financial markets were most useful when risk aversion 

was high, now the reverse is true. Where there is a difference in the assessment 

of the mean of logs, a large CER is provided by the futures market. Nonlinear 

instruments increase the CER somewhat and polynomials perform slightly better. 

The magnitude of this gain is of the order of moving from a minimum futures 

contract of 5,000 bu to a zero minimum. 

Summarizing Tables 1 and 2, a futures market (i.e., a polynomial market 

with a power value of 1) would appear to satisfy most of the demand for 

contingent claims. To the extent that a demand for nonlinear payoffs exists, 

polynomial instruments, and in particular, low power instruments appear more 

useful than options. 
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7. VALUING POLYNOMIAL CONTRACTS 

Ignore for the moment interest rates, time value, and risk aversion. Assume 

that there are unbiased markets. To value consider the definition of variance; 

14 - E[(P - |i.« (33) 

where = expected value of price = Fj and (ij = i"* moment about the mean, i 
> 1. 

Expand ^2 to get 

fJ = ElP^] = 4. (^,)2 . * (f,): (34) 

where F, denotes the i™ moment about zero. Thus the value of the 

instrument is the variance added to the square of the futures price. 

In general 

£(i"] = 4. iFfi., - li(i-l)/2](,F^)%., ,35, 

+ ['•(<-1)(<-2)/6](Fi)'^;.3 - * (i-l)(-l)W 

where there are i terms. In summary, we can make two statements 

1. From the l,2,..,n™ moments of the markets' assessment of the future price 

distribution, the price of the contract that pays P" at settlement can, in 

efficient markets, be inferred; and 

2. From the 1,2,..,n™ polynomial futures prices in efficient markets, the n™ 

moment of the markets' assessment of the future price distribution can be 

inferred. 

These statements cannot be made about options because, to value options, the 
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price distribution must be completely specified. If we wish to accommodate the 

interest rate, r, time to expiration, T-t, and risk aversion in the polynomial pricing 

formula, we must also specify the price distribution. If we assume a lognormal 

distribution, we can dynamically combine the contract with the underlying price 

to purge the system of uncertainty, as in Black and Scholes (1973). 

Let Pt denote the asset price at time t and let Px be the asset price at 

termination. We need F,, the value of this claim at time t. Where convenient, 

we will express F; as Fj(PJ to show it's dependence on both the underlying asset 

price and time. We denote the instantaneous variance of the log of the 

underlying asset price as Op^. Continuing in the manner of Black and Scholes 

(1973), we arrive at their nonstochastic partial differential equation problem 

Wr) = Pi 
F,(0) = 0. 

The solution is 

(36) 

If the claim is written on a futures contract rather than on the underlying asset, 

then the relevant partial differential equation problem is that arrived at by Black, 
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Wr) = 
Fi(0) = 0, 

where X, is the futures contract price at time t. The solution is 

F.(X,) = gOJ,(f-i)o^(r-,)-r(r-,) (37) 

Note that the value of a bond, and the value of an ordinary futures contract, are 

special cases of (37). Further, (36) or (37) can be used to generate a 

polynomial base with which we can closely approximate the value of any analytic 

payoff function.^' 

^^Many businesses have exposure in two prices, i.e., feeder and fed cattle, or oil 
and exchange rates. Options instruments are not well suited to hedging any price 
interactions. A contingent claim on the product of the prices may be warranted. 
For two prices P, * and Pb,t the value of the cross product, Fa5,„ is Fgb.t = P. t Pb.t 
Exp[pab ®a ®b (T-t) + r (T-t)] where Oj and are respectively {Var[Ln(Pj,)]}^ and 
Cov[Ln(P,_t),Ln(Pbt)]/(o„Ob). 
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8. SUMMARY AND CONCLUSIONS 

Options markets, as they are currently structured, evolved in a somewhat 

haphazard fashion. This paper asks how they might have looked had they been 

designed within an optimization framework. We describe an alternative market 

structure that may be more useful than current options markets to both hedgers 

and speculators and to the markets themselves. These polynomial markets would 

be continuous nonlinear functions of the futures price, and would be more closely 

linked to the higher moments of price than are existing options markets. 

Currently market operators are trained to think in terms of moments; yet 

they must act using instruments (options) that are not directly connected with 

moments. It is because of the consistency of the polynomial contracts with 

statistical theory that the valuation formulas for polynomials presented in this 

paper are so simple. Finally, unlike nondifferentiable options, polynomial 

contracts lend themselves to mathematical analysis. 

It is difficult to anticipate whether market participants would be prepared to 

undergo the learning process required to fully understand and trade polynomial 

contracts. Existing options markets often require an ability to manipulate 

position diagrams, calculate fair option values, and understand a relatively large 

vocabulary; yet, they have been extremely successful. Contracts traded on the 

square or square root of the underlying asset price, although not as familiar as 

options, require no additional aptitude for math. 

If markets began trading in polynomial contracts, the number of markets 
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required per underlying asset would fall by at least SO percent. This is true 

because the current structure requires trading in both puts and calls, whereas an 

individual could choose to go long or short on a single polynomial. Because of 

the direct link between polynomials and the underlying asset price, no separate 

markets would be required for each of several strike prices. Participants who 

expected large price moves could purchase a suitable polynomial, and if proven 

correct, could quite easily liquidate the position. This contrasts with existing 

options markets, where deep out of the money contracts are either not offered or 

very thinly traded. Also, investors can often find it difficult to sell deep in the 

money options at close to their theoretical values. 

It is difficult to determine how many polynomials per asset would be 

supported by the market. The number would be determined by market liquidity, 

much as the number of strike prices are determined today, but the total number 

required for each underlying asset, would be less than the number of options 

markets. Essentially the marketplace would decide the order of a Taylor's series 

expansion that is economically warranted. In simulations reported here, it 

appears that almost all the benefit of additional polynomials falls after two or 

three have been introduced. Thus it is possible that three polynomials could 

replace the four to five calls and four to five puts that typically trade today. Any 

reduction in the number of prices quoted per underlying asset would concentrate 
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market liquidity and consequently reduce bid ask spreads. By offering markets 

that provide more flexibility and lower transaction costs, the exchanges should 

benefit from an increase in market volume. 
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APPENDIX I 

Consider the CARA utility function U(Y(P)] where Y, income, depends on 

price, P. 

U[Y(P)] = 1 -

where k is the risk aversion coefficient. Income will be the sum of business and 

financial profits. Using GAUSS software, we numerically integrate utility with 

respect to the price density function 

J(l_e-iy(P)) dP =EU. 

Denote the certainty equivalent return by c. It is the certain income that 

generates the same utility as a rislqr income distribution. 

1 - Exp[-kc\ = EU 

. . Ln{l - EU] 
(-^) 

It is this value, expressed in $, that is reported in the tables. 
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ABSTRACT 

By approximating the expected value of a function, nonlinear in a stochastic 

variable, as the sum of values of a sequence of options, we gain additional 

insights about economic behavior under uncertainty. This is because the 

respecified behavioral equations contain probabilities and conditional 

expectations that respond in a predictable manner to changes in the probability 

distribution. The procedure is formally developed in the context of expected 

utility maximization when output price is stochastic. It is applied to three 

problems: to value a risky investment, to study production under price 

uncertainty, and to study the effect of price uncertainty on expected output when 

output can be modified in response to realized price. 
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1. INTRODUCTION 

The analysis of decision making under uncertainty deals primarily with the 

maximization of the expected value of a welfare function. This paper presents an 

alternative approach to analyzing this class of problem. To understand the 

marginal effect of an increase in uncertainty it has, in the past, been necessary to 

place restrictions on either the objective function, or the probability density 

function (p.d.f). It has also been necessary to be explicit about the meaning of a 

marginal increase in uncertainty, because different conceptualizations may not 

have equivalent economic implications [18]. Finally, the technologic 

environment must be well defined, because both the technology and the decision 

sequence may alter the effects of uncertainty [10, 30]. Economic results have, 

inevitably, been on a case-by-case basis. Knowledge has been improved through 

new perspectives [27,29], more complicated analytics [14], or the analysis of new 

situations [10, 30]. The intent of this paper is to present an alternative approach 

to the maximization problem. It is shown that particular techniques, widely used 

in finance and statistics, may be applied to problems in the economics of 

uncertainty. 

The earlier work on the effects of uncertainty on economic choices when 

nonlinearities exist were mainly graphical and intuitive in orientation [22,28]. 

By introducing the concept of a mean preserving spread (m.p.s) Rothschild and 

Stiglitz [25] and Diamond and Stiglitz [7] provided a more analytic theoretic 

foundation to research in the area. Using this approach, Lippman and McCall 
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[17] imposed structure on the product of income and the first derivative of the 

utility function to sign the effect of price uncertainty on the choice variable. 

Sandmo [27] restricted the concept of an m.p.s to facilitate a straight calculus 

approach. Much subsequent work has been approached from this perspective 

[9]. Uncertainty has been widely modeled as a global change from certainty to 

uncertainty [10,29], where Taylor series have proved useful, or as a very 

structured marginal change in uncertainty [3, 9,21, 30]. In particular, mean-

variance analysis has been used extensively in economic models of production 

[24]. The most general and insightful approach has been through stochastic 

dominance techniques [5,21,23]. 

In seeking to attribute meaning to the interaction between the objective 

function and the p.d.f, this paper departs from the traditional approach to 

optimization under uncertainty. In this paper, we show a link between the 

second derivative of the objective function and the cumulative density function 

(c.d.f). To show that the technique has promise, we apply it to three of the most 

widely studied problems in the uncertainty literature. First, to develop the 

intuition, we use the methodology to place a bound on the value of a risky 

investment. The second application, the response of production to a marginal 

increase in uncertainty, strengthens existing results. The final problem addressed 

is the effect of a change in the structure of the profit function on expected 

production when price is uncertain. 

The main body of the paper has four sections. First, we develop the 
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technique in a very general context. We finish the section with an identity 

equating the conventional expression of expected welfare with an alternative. 

Analogues of this alternative expression are used to generate results in sections 3, 

4, and 5. Section 3 deals with valuing a risky investment. Sections 4 and S deal 

with production under uncertainty and expected profit under uncertainty, 

respectively. Finally, the paper is summarized and conclusions are drawn. 
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2. THE MODEL 

For the purpose of illustration, we will develop the model in the context of 

maximizing expected utility. Consider a continuous, piecewise linear 

approximation to a three-times differentiate concave utility function. Because 

utility specification is unique up to a positive linear transformation, we can 

normalize. At the lowest possible income level (price is zero), we can set utility, 

U, equal to income, Y, and set marginal utility equal to 1. For simplicity, let the 

approximation consist of three segments. Let and Ag be the income levels 

where marginal utility changes. The approximation is illustrated in 

Figure 1. 

\ Y for Y ^ 
(1) 1/ « I + a,(y - A^) for A^ < Y ^ A2 

I " A) + ~ ^2) Z®'* ^2 ^ ^ 

Let 

(2) Y  =  P Q -  C i Q ) ,  

where Y is income, P is stochastic price at the marketing date, Q is output, and 

C(Q) is the cost function. Let and P; be the prices where marginal utility falls 

from 1 to a^, and from a^ to a2 respectively. 

+ C«?) 
(3) •• Pj = 

(4) Pz = 

<? 

4 + C(Q) 

Q 

Denote the probability distribution function of price by f(P). The problem is to 
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Slope 

Slope a-j 

Slope ao = 1 

Y A1 A2 

Figure 1. Approximation of utility function. 
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maximize 

p, p, 

E m m  «  j [ P Q - C i Q ) \ f i P )  d P  ^  f [ A , * a , [ P Q - C { Q ) - A , } \ f i P ) .  

(5) _ 0 

+  f l A i + a ^ ( A ^ - A ^ ) + a ^ [ P Q - C ( Q ) - A 2 ] ] f ( P )  d P .  

Consider Figure 2 where three lines; Bl, B2, and B3 are drawn. If these 

functions are added, we get the supporting, continuous, piecewise linear function 

in Figure 1. Bl is linear in Y with slope 1. B2 is zero for all Y lower than 

and has slope a^ - 1 after that. Observe that in the financial markets literature, 

this is a written call^®. It shows the payoff from a^ - 1 calls written on Y, where 

the strike price is A^. B3 may be interpreted as aj - a^ calls written on Y, 

where strike price is Ag. If we rearrange (5), we get 

E[U(Y)} « £[P]<? - C«?) - {1 - ai)Prob(P>Pi){E[Y\P>P^] - A^} 
(6) 

- {fl, - a^}ProbiP>P2){E[Y\P>P^] - A^l 

It can be seen that (6) is expected income plus a weighted sum of expected losses 

from written calls. Now, refine the approximation so that there are n piecewise 

continuous linear segments. Reformulate the problem so that a^ = 1 always, and 

that Aj and aj do not have the same numerical values as in equation (S). P; is the 

A purchased call is a contract which grants the purchaser the right, but not 
the obligation, to purchase a specified asset at specified future date for a specified 
price (strike price). The option will be exercised only if the asset price on the 
specified date exceeds the strike price [18]. A written call is the obligation to sell 
the asset if the call purchaser wishes to buy. 
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B1 : Slope = 1 

A2 

83: Slope = ë2-ai 

Figure 2. Position diagram decomposition of approximation to utility function. 



www.manaraa.com

118 

critical price at which marginal utility changes from a^.i to a,. From equations (3) 

and (4), it can be seen that P| is a function of Q, and may be written as P|(Q) to 

emphasize this relationship. Yj is the income at that critical price. The 

approximation may be written as 

E[U(Y)] « EIPIQ -  C(Q) - E f i r -  y)) dP(a ,.i -  a,} 
i-i 

(7) 

= - a,). 
<=i 

Note that aj.i - aj, when divided by - Aj, is a discrete approximation to 

U"iY). It is necessary, before going further, to summarize some concepts in real 

analysis. We wish to show that an integration may be substituted for the 

summation sign in equation (7). In Appendix I, we show that jiX ~ /(f) àP 

is Stieltjes integrable with respect to a,, and that, at the limit, we may substitute 

U"(Y^ dY^ for a; -aj.i. The implication is that, at the limit, equation (7) becomes 

(8) E[U{m = E[y] + / U"(Yt)f(Y -  Y^)f{P) dP dY^. 

Noting that Yj = PjQ - C(Q), we may write (8) as 

(9) E[Um = £[n + <?/ U"{Xi)fiP -  Pi)f(P) dP dY, 

We note that the inner integral J(P -  f,) f(P) dP is the value formula for a 
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call option with strike price Pj. Equation (9) may be viewed as comprising two 

parts; expected income, less the limit of a weighted summation of call options. 

The second part, in turn, is comprised of two components. One component is 

due solely to the curvature of the objective function, and does not arise from 

uncertainty. The other component is due to the interaction of the curvature of 

the objective function and the price uncertainty. This interaction dependence 

would be eliminated if price were nonstochastic. 

An alternative interpretation of (8) and (9) is to view the function 1 - as 

a probability measure. Its value at is 0 by construction. If the utility 

function is concave, then 1 - {/Ms monotonie increasing, while if we assume that 

marginal utility at infinite income is zero, then the function has a maximum value 

of one. The requirement that marginal utility converges to zero is often imposed 

to avoid the Menger's super St. Petersburg paradox [10]. From this perspective, 

the second term on the right in equation (8) can be viewed as the negative of the 

first moment of qJ(P - f,) fiP) dP with respect to the measure 1 - V. Using 

equation (9), or its analogues, we now proceed to our three applications. 
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3. THE VALUE OF A RISKY INVESTMENT 

The problem here does not involve an optimization, but rather the 

quantitative measurement of the value of a given investment. In this section, the 

economic agent faces no choices; we seek only to understand the effect of 

uncertainty on equation (9). First we note that, because U" < 0, any factor that 

influences call prices uniformly, regardless of strike price, will have a determinate 

effect on expected utility. Merton [19] has shown that a mean preserving spread 

(m.p.s) cannot decrease the expected value of a call option, and will increase the 

value of a call at some strike price. Thus, any m.p.s reduces the expected utility. 

This conclusion concurs with a proof by Rothschild and Stiglitz [25]. 

We will now, by imposing the restriction of increasing failure rate (i.f.r) on 

the p.d.f, develop a lower bound on the value of investment. A distribution is 

globally i.f.r if, and only if, for each price, the density function divided by one 

minus the c.d.f is increasing in P for all P. The exponential distribution is 

globally constant failure rate, i.e /(f )/[ 1 - F(P)] is independent of P. The 

normal distribution is i.f.r while the Gamma and Weibull distributions will be 

either globally i.f.r or nonmonotonic [2]. The lognormal distribution has a 

nonmonotonic failure rate. We now present a lenmia from Henin and Ryan 

[11]: 
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Lemma 1: If the distribution of change in price between now and date of sale is 

independent of present price, and if the distribution is if.r, then the log of the call 

value is concave in present price. 

The present price provides information concerning the distribution of price 

at date of sale. Let us respecify ~ ^<) /(f) àP as 

J (e + P, - P,) g(e) de. Here is the present price, e is the price jump 

between now and date of sale, and g(e) = f(P). Denote the value of a call with 

present price P, and strike price P; as W(P,,Pi). If we differentiate W(Pt,Pj) with 

respect to present price we get 

^ - / *(«) </6 = 1 - G(P, -/>,) = ! -

where G(.) is the c.d.f of e. A second differentiation gives 

d^W 

dP, 
= giPi -  P,) = f(Pi) '  

The concavity of the log of the call value in present price implies 

\2 

W(P„Pt) 
(d^w) 

[ d p ^ l  k, 
< 0 ,  

or 

0 < W(P^Pt) < 
jdWIdP,? ^ [1 -

d^WfdPf /(f<) 

Now we can state 
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Lemma 2: If the distribution of change in price between now and date of sale is 

independent of present price, and if the distribution is ifr, then a lower bourui on 

expected uti l i ty is  E[Y\ + Q'^E[U"(y){H{P)y'^ ' \  where H(P) is 

/ ( /»)/[  1  -  F(P)].  

Proof: From equation (9) 

E [ U ( Y ) ]  = E [ Y ] + Q f  U " ( Y ^ ) [ f ( P  -  P , ) / ( P )  d P ]  d Y ^  
^1- f, 

= £[n + <? / W{P^P^) 4% 

> E { Y ] * Q j  U " ( , Y ^ )  {[1 - F(P)f|fiP^)) dY^ 

= E[Y] + Q^fu'XYi) lHiP^)r^f(P) dP^ 
0 

= E[Y} + Q^E[U"iY){HiP)y^\ Q.E.D. 

We can further note that 

E[U{Y)]>E[Y\^Q^E[U"{Yy\E[iH(,P)y'^\  *Q^Cov[U"m,mP)r\ 

but dH'VdP = - 2 H'^(dH/dP) < 0 because the density function is i.f.r. Thus, 

the covariance is positive (negative) according as U"'(Y) < ( > ) 0. We can say 

that, holding EiU'XY)^ constant, the lower bound rises (falls) according as 
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U"'(Y) < ( > ) 0. 

In summary, in this section using the assumption of i.f.r, we developed a 

lower bound on expected utility. In the next section, we will model uncertainty 

when there is a decision variable. 
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4. PRODUCTION UNDER PRICE UNCERTAINTY 

Sandmo [27] has shown that a risk-averse decision maker produces less 

under price uncertainty than under price certainty when the production decision 

cannot be modified in the light of subsequent knowledge. Ishii [14] proved that 

nonincreasing absolute risk aversion (non-IARA) is a sufficient condition for 

quantity to fall under a Sandmo type, marginal increase in price uncertainty. 

Turnovslqr [29] has shown that, when production can be altered later, a risk 

averse decision maker may plan to produce either more or less than his/her risk 

neutral counterpart. Some recent work in this area has imposed restrictions on 

the form of the production function [16]. An alternative approach has been to 

impose restrictions on the structure of utility [4,12,16]. Yet other papers have 

placed different restrictions on the nature of the mean preserving spread (m.p.s) 

occurring [8]. Meyer and Ormiston [20] applied stochastic dominance to show 

that there exist no economic situations for risk averse agents where the choice 

variable changes uniformly in direction for all mean preserving spreads. They 

also show that a m.p.s such that all shifted density is relocated to outside the 

support of the original density function will always reduce output. Davis [6] 

provided a good analysis of why the production effects of a m.p.s have proven so 

problematic. 

This paper returns to the issue addressed by Sandmo and by Ishii: what is 

the most general condition under which a risk-averter's production falls as price 

uncertainty (in the form of a m.p.s) increases? Risk-neutral producers ( U" = 0) 
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will, in Sandmo's model, produce the same before and after a m.p.s in price. In 

this section, we will show that U" < 0, and a mild condition on the nature of the 

m.p.s are sufficient to ensure that output falls with a m.p.s in price. 

In contrast to the previous section, Q is no longer fixed but may be chosen 

ex ante. As some of the material in this section involves tedious mathematics, we 

abbreviate the steps here and include expanded versions in the appendices. Let 

us note that = - C(Ç), and that = [y, + C(Ç)]/Ç. Differentiate 

equation (8) above using Leibnitz rule on the variable bounds of integration (see 

Appendix II). After some manipulation, we arrive at 

-  C/ + /  U"(Yt)f{P -  C'}f(P) dP dYt 
(10) 

+ C'U'XY^)QE[Ph 

where we let C denote marginal cost, and U"{Y^ be U"(Y^) evaluated at 

Y^. Sandmo has shown that under uncertainty, E[P\ > C'. The term 

C'U'XY^QEIP} is negative. The expression ~ C4/(f) dP is always 

positive, so the term J U"(Y)- C') f(P) dP dY^ is always negative. Now 
f, 

assume that Q satisfies the first order condition. If a m.p.s occurs, it affects only 

the expression 

(11) B  =  f  U"(Yf ) f{P - OfiP) dP dY^. 

As in Sandmo let us assume the second order condition. 
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(12) < o. 
dQ^ 

Before going further, let us consider the most basic m.p.s from which all other 

mean preserving spreads can be constructed [25]. See Figure 3 below. Two 

chunks are removed from the mass, and two are added. The one removed at the 

lower price is added at an even lower price, while the chunk removed at the 

higher price is added at an even higher price. This is done so that expected price 

does not change. Loosely denote the four areas where density changes by as 

the highest, then P^, Pg, and P4, the lowest. We call the density change around Pj 

the j™ part of the density change. It can be shown that if one, two, or three 

parts of a m.p.s occur at a price less than C, then for all values of P, the 

expression - C') fiP) dP rises with the m.p.s (see Appendix III). Using 

the Rothschild and Stiglitz (R&S) step function concept of a m.p.s, we can build 

a more general distribution that is a m.p.s and reduces output. All distributions 

whose difference from the original distribution can be decomposed into R&S 

m.p.s functions such that for each function one, two, or three parts occur at prices 

less than C will increase the value of JiP - CO /(P) dP regardless of the value 

of Pj. One such distribution is illustrated in Figure 4 below. This distribution is 

built up from m.p.s functions where two parts of the spread occur at either side 

of marginal cost. In this case there can only be one crossing of the c.d.fs. 

However, when we build up a m.p.s from combinations of all three cases, then 

three, or any odd number of crossings can occur. To see this let three parts of 
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Density 
function 

f(P) 

h{P) the m.p.s. function 

Figure 3. Basic step function mean preserving spread. 
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Cumulative 
density 
function 

Original c.d.f. 

Mean preserving 
c.d.f. that will 
reduce output 

Figure 4. Cumulative density function of an output reducing, mean preserving spread. 
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one simple m.p.s, call it A, occur below marginal cost, and let one part of 

another m.p.s, called B, occur below C\ The situation is described in Figure 5 

below. Let the one part of m.p.s B below C' be closer to C' than the three 

parts of A, and let the size of the step, «g, be large relative to the size of the 

steps in A. Having adjusted for these two simple m.p.s functions, the new c.d.f 

will first rise above the old one, return to it, fall below it, and then rise above it 

again before price exceeds marginal cost. As the part of the m.p.s that is at the 

highest price, whether it is from A or B, is always positive in direction of 

displacement, the new c.d.f will always rejoin the old one from below. Thus an 

odd number of crossings of the c.d.fs must occur for any mean preserving density 

shift. For the m.p.s shifts A and B considered here, the second and third 

crossings occur because Pi can be arbitrarily large. 

We are now in a position to state the central result of this section. 

Theorem 1: If  U"{Y) < 0, the second order condition holds, and a m.p.s can 

be decomposed into R&S m.p.s junctions where for each function one, two, or three 

parts are below C', then quantity falls with the m.p.s. 

Proof: We have shown that under these conditions, the value of 

J{P - C^}f(P) dP increases for all P;. Thus, 
p m m 
B = j  U"iY^) ~ C) f{P) dP dYi must fall with a m.p.s. But this is the only 

term in (10) that is affected by the m.p.s. Therefore, the right hand side of (10) 



www.manaraa.com

130 

p.d.f 

crossing crossing crossing 

Figure 5. A mean preserving spread that reduces output, and that has a three crossing 
cumulative density function. 
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becomes negative and Q must change to restore equilibrium. But from equation 

(12), the right hand side of (10) falls with an increase in Q. Therefore, Q must 

fall. Q.E.D. 

As this type of m.p.s is a special case of second degree stochastic dominance 

(SDSD), we cannot infer that SDSD is sufficient to ensure a fall in output. 

Theorem 1 provides an interesting viewpoint on Sandmo's result that a global 

increase in risk reduces output. When price is certain, marginal cost equals 

expected price. In this case a m.p.s necessarily involves moving density from not 

above C down to below and moving density from not below C to above it. 

This situation is covered by theorem 1. 

We will now show that output may rise under risk aversion when both the 

expected price falls and the price distribution is more dispersed. We introduce 

the concept of a mean altering spread. Viewing Figure 3, a mean reducing 

spread is where more density is removed from around P3 and added to around 

P4, or less density is removed from around Pg and added to around P^. A mean 

increasing spread is where more density is removed from around Pg and added to 

around Pj, or less density is removed from around P3 and added to around P4. 

The following, somewhat counter-intuitive, result places an upper bound on the 

possible strength of results concerning the effect of price uncertainty on 

production. 
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Theorem 2: For any mean reducing (increasing) spread, there exists a concave 

utility function with U'"(Y) > 0 such that production rises (falls). 

Proof; See Appendix IV. 

Unlike Theorem 1, in Theorem 2 it was not necessary to impose restrictions 

on the m.p.s. These two theorems are worthy of some comments. The second 

lemma concerns self-protection. If expected price falls, there is a disincentive to 

produce, but there may also be an incentive to produce more in order to reduce 

the probability of a heavily penalized low income. As the distribution arising 

from a mean reducing spread is always second degree stochastically dominated by 

the original distribution, it is plain that being dominated in the SDSD sense is 

not a sufficient condition for output to fall. Another point is that Ishii's 

sufficient condition on utility structure (non-IARA) for a marginal m.p.s to 

reduce output relates only to Sandmo's restrictive form of m.p.s. For the more 

general m.p.s, it is not clear that Ishii's condition is sufficient because no 

structure is placed on how density is moved about. We can also see from 

Theorem 1 that any m.p.s that is confined to extreme price levels will reduce 

output if the second order condition holds. The price squeeze of Eeckhoudt and 

Hansen [8] and proposition 3 of Meyer and Ormiston [20] are special cases of 

this phenomenon. Finally we note, as did Meyer and Ormiston, that U" < 0 is 

not a sufficient condition for production to fall under a m.p.s. Choose a R&S 
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m.p.s where either no part or four parts of the function are at prices below C\ 

At the part of the spread where the the value of J(P - C) f(P) dP decreases, 

let the absolute value of U" be sufficiently large to cause B to rise with a m.p.s. 

In this case, output will rise with this particular m.p.s and utility curve. 

We now apply the technique to a third problem; how output price uncertainty 

affects the expected output of an expected profit maximizing firm with some 

flexibility in choosing output after price is realized. 



www.manaraa.com

134 

5. OUTPUT UNDER PRODUCTION FLEXIBILITY 

There has been much work done on the implications of technologic flexibility 

when the output price is uncertain. Oi [22] demonstrated that price uncertainty 

may benefit producers. Tisdell [28] provided the analogous result for input price 

uncertainty. The issue of choice of equally flexible inputs under output price 

uncertainty has been addressed by Batra and Ullah [1]. They show that when 

some, but not all, inputs can be chosen after output price has become more 

certain, a nonlinear utility function is not necessary to motivate altered decision­

making. They also show that the presence of uncertainty does not change the 

ratios of marginal productivities. Tumovsky [29] found that the ratios do change 

if inputs have different levels of flexibility. He also shows that, in a model of 

quasi-fixed inputs, planned production may rise or fall due to output price 

uncertainty. This is because flexibility encourages extra investment, whereas risk 

aversion discourages it. Hartman [10] applied Jensen's inequality to show that, if 

the marginal value of the quasi-fixed input is concave (convex) in output price, 

then optimum quasi-fixed investment falls (rises) with uncertainty, provided that 

the marginal product of the quasi-fixed input is an increasing function of output 

price. Epstein [9] generalized somewhat on Hartman's results. Wright [30] took 

a more detailed look at the effect of flexibility on variable factor use and factor 

proportions under output price uncertainty. He showed that input and output 

price uncertainty were very similar in effect. This section will consider the 

effects of uncertainty on production for an expected profit maximizer. 
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In this section, we will first develop an expression for expected profit in terms 

of options. We will then use the expression to find expected output and 

properties of expected output. Define a firm's decision making process as 

follows: first quasi-fixed inputs are chosen, then output price is revealed and, 

using this price information, variable input choices are made. Consider a profit 

function where technology is somewhat flexible so that the function is convex in 

output price. We consider a firm that seeks to maximize expected profit. As 

before, we approximate the profit function in a piecewise linear manner. To 

illustrate, assume that there are three segments. Let Ag be the approximate 

profit when price is zero. Let bg, b^, and b2 be the marginal responses to price 

over the first, second, and third segments respectively. The profit levels at which 

marginal response rates change are between the first and second segment, and 

Ag between the second and third segment. The approximation is then 

I Aq + b^P for ic ^ i4, or P<P^ = 

(13) ii(/») a I i4,+Z>i(P-Pj) ^ or fg ^ f < fg = f 

A  - A  
I Xg + 62(f - J^) for Aj^<n or P^=P^+ 

Now the approximate expected profit function may be written as 
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Pi 

(14) 

£[ii(P)] « /Mo + b^P]fiP)dP + fiA^ + b^iP -  P^)]fiP)dP 
0 P| 

+ f lAi * -  P,)] f(P) dP. 

= ^ t »„£[P] * flA,-A„* (», - »o)P - <0> 
0 

+ f lA^-A, + (b^ -  + b^P^ -  b^PiViP) dP. 

As before, introduce more segments to refine the approximation, and then take 

the limit. 

£[iï(P)] = A^ + b^E[P] 

* //["'( f ,)  * Pn'XP,) -  P,lt"(P,) -  ll '(P,)l /(P) dF dP, 
(15) ii, 

= X, + + f / (f - P,)/(P) dP dP,. 
0 P, 

We see at once from (15), Oi's result that expected profit rises with a m.p.s 

because the value of a call rises with a m.p.s. We can also place bounds on the 

value of expected profit, using arguments similar to those presented when we 

considered the value of a risky investment. 

We now postulate a subsidy that does not affect second, and higher moments 

about the mean. Adding a price subsidy, s, the expected profit becomes 
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(16) E[n(P+s)] = Af,  + b^E[P*s] + fn"iPt)f(P+s-Pt) f(P) dP 
0 p, 

Differentiating with respect to s we get 

(17) dE[n(P+s)] ^ + Jit 'XP,) [1 - F(f,)] dP, 
as 0 

If there is a support [Dj, D^] on the density function, then (17) may be rewritten 

as 

) + /,"(?,)[!-F(f,)| dP, 
ds i. 

This relationship may be viewed as the welfare effect of a subsidy for a risk 

neutral producer. Alternatively, we may view (17) as the production effect of an 

increase in the mean holding constant all other moments around the mean. 

Interchanging the expectation and differentiation operators, this is admissible as 

neither lower nor upper price bound depend on the subsidy, we see from 

Hotelling's lemma that expression (17) represents the expected level of output, 

E[Q]. We are now in a position to state 

Lemma 3: Given a support on density [Dp DJ, then an upper bound on expected 

output is  ^  (D;) + EiPl f—rfP,.  

Proof: The Markov inequality for a nonnegative random variable P gives the 

inequality f,[l - F(f,)] i E[P]. Substitute this inequality into the support 
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adjusted version of equation (17). Q.E.D. 

For a given technology, represented by the profit function, no price distribution 

with the same mean can, in expectation, generate output exceeding this bound. 

We can go further by noting that the Markov inequality gives 

moments of price we can place an upper bound on expected output. If given 

knowledge on several moments we can impose a set of inequalities. 

We also note that there are couples of profit and density functions for which 

the response of expected output to a subsidy is the same. If the profit function 

V(f)/[1 " PU")}, where k is a positive constant, then E[Q] is constant. To see 

this substitute into equation (17), 

This is independent of s. The increased incentive to produce from increased, 

expected price is completely counter-balanced by the shift in the profit function. 

Note that there is a dual relationship between the profit function and the price 

distribution. The profit function dual (in this sense) to the distribution described 

by the density function f(P) solves the differential equation 

P[[l -  F(Pf)] ^ EEP'], for any r > 0. Now, if given knowledge of any of the 

changes with a change in price distribution such that n"(P) equals 

</£[ff(P+s)] 
ds 

= + /n"(P,)[l dP,-b„* k. 
0 



www.manaraa.com

139 

(18) n(0)=i4o 

n'(0) = b^. 

For example, for the exponential price distribution F(P) = 1 - e'*'*^ we find 

-saB- = tx. 
(1 - f(a] 

and the solution is the quadratic profit function 

(19) n(f) =Xo + b^P + 0.5kXP\ 

Let us now look at the effect of a change in the technology on how 

beneficial a subsidy is. We ask whether production rises when the curvature is 

concentrated around one price level, or when it is more dispersed. To do this we 

must define a concept of curvature concentration. Denote it'^(P) by y. This may 

be viewed as the inverse of the slope of the supply curve. For convenience let 

the price p.d.f be strictly positive only on the domain [D^, Dg]. Define G = 

jn"(,P) P dP. Just as a m.p.s alters the location of density^while holding E[P] 

constant, we will alter the location of h'XP) while holding j"n'̂ P) P dP 
Dt 

constant. We will call this operation a m.p.s in curvature. From a marginal cost 

curve perspective, the marginal cost curve first falls relative to it's original level, 

and then rises to above the old curve before returning to the original. As Ag 

and bo are held constant, it can be shown that a dispersion of curvature as 

described above will generate a profit function that dominates the original profit 
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function over the domain of the m.p.s in curvature, while at other points in the 

price domain the old and the new profit functions are identical. Further, the first 

derivatives of the old and new profit functions are identical at and Dj. We 

can consider this technology change as a switch from one machine to a more 

advanced one, or a change in the way inputs are combined. One might expect 

that if the profit of a firm rises at some prices and never falls, then expected 

output should rise. The following theorem shows that whether expected output 

rises or falls depends upon the shape of the price distribution. 

Theorem 3: Expected output will rise (fall) under a m.p.s in curvature according 

as F(f,) is concave (convex) in the domain of the m.p.s. 

Proof: We use Rothschild and Stiglitz concept of a mean preserving spread. 

That is, let the change in distribution function be denoted by and let 

r ( y )  = o ^ 0  for a < X < a + w 
-  a  ^  0  f o T a + v < x < a + v  +  w  
- p ^ O  f o T b < x < b + w  

P ^ 0 for b  +  e < x < b  +  e  +  w  
0 otherwise, 

where 0 < a < a  +  w i a  +  v < a + v  +  w < b i b + w < b  +  e + w ,  and 

p« = av. We may write the change in E[Q] with a m.p.s in curvature as 

a+w a+v+w 

A = «( / dP, - j àP,) 

(20) 
- p(/[l-f 'WJ dP, - / [1 dP,). 

b*e 
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We re-write equation (20) as the limit of a Riemann sum 

(21) 

- Urn. 

= Urn. 

-

aw 
n + 1 

Pw 
i» + l 

n + 1 

Pw 
/i + l 

Now let us invoke the mean value theorem^'. Replace 

F(a+v+iwln)-Fia+iwln) with vF'(Ç,), where F'($,) is the partial derivative 

with respect  to  price evaluated at  and where a+iwin < 5,  < a+v+iwin. 

Replace F(jb+e+iwln)-F(b+iwln) with «Fl(ii^), where 

b+iwjn < 1), < b+e+iwfn. Thus equation (21) may be rewritten as 

1 A aw Urn 
ds 

(22) - P w Lim. 

= a vw Lim. 

«+1 

1 

« + 1 

[ E I 

[ E "'"(5.) 1 
<-0 

n+l 

<-0 

H 

E ' - nn,) I 
1=0 

" The mean value theorem states that if *K(f,) is a continuous function on 
[aj>] and differentiable on (a,b) then, there is a point in (a,b) at which 
W(a) -  W(b) = (b -  a)W%). 
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But > b-a-v > 0. If F(Pf) is strictly concave then f> 0. 

We also know that > FXa+v)-F'(b) > 0. Let 

F'(a+v) -  F'(b) = ft, 

and substitute into equation (22), 

A i ttVwLim, 
ds H-*- n + l 

E " avwàUm^^ 
i-O 

n 
/i+l 

= avwfi > 0. 

ForF(Pi) convex FX'i)-F'('r\) < F'(o+v)-F'(i>) < Ô < 0 and 

A = A £[<?] < 0. 
as Q.E.D. 

Thus, even though the technology change is such that the altered profit function 

dominates the original profit function at some prices and is never dominated by 

the original profit function, expected output may fall. Whether it rises or falls 

depends on the curvature of the price density function in the locality of the 

change in profit function curvature. For example, if price is normally distributed 

then a curvature change that preserves G will increase expected output if all the 

curvature change occurs at prices close to E[P], but will decrease expected output 

if all the curvature change occurs at either tail of the price distribution. We can 

go further by applying Jensen's inequality to equation (17). Let the c.d.f be 

strictly concave (convex) on the domain [E^, Eg], and define 

H = jP dPllnXE2)-n'(E^)]. From theorem 3 and Jensen's inequality, if 

H is constant then expected output must exceed (cannot exceed) 
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*0 + )]<«', * [l-F(H)]()t'(^)-lt'(£,)l 

0 

+ {v»(,p,ni-F(.p,n jp, .  

The technology, or profit function, that generates this lower (upper) bound on 

expected output is that constructed by extrapolating the tangent of the profit 

function at forward and extrapolating the tangent of the profit function at Eg 

backward. The intersection is at H where the profit function is kinked. Thus, 

the technology that produces the lower (upper) bound on expected output has 

zero curvature on (E^, H) and on (H, Ej). The curvature is all concentrated at H 

where it is infinite and may be represented by the limit of a Dirac delta function, 

a function used to model impulses in the theory of differential equations. 
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6, CONCLUSIONS 

In this paper we have shown that the existing body of knowledge on financial 

option theory can improve our understanding of the theory of the firm under 

uncertainty. The analogy would seem to possess considerable potential. We 

have applied our technique to three of the most intensively researched problems 

in the theory of the firm under price uncertainty. In the first application, the 

value of a rislqf investment, we show how a lower bound can be placed on the 

investment value. In the second application, production under uncertainty, we 

show that when the utility function has a negative second derivative, and when a 

m.p.s satisfies a condition somewhat stronger than second degree stochastic 

dominance, then output falls with the m.p.s. This condition permits multiple 

crossings of the c.d.fs. It is also shown that second degree stochastic dominance 

cannot be a sufficient condition for output to fall under a m.p.s. We prove that, 

perhaps counter-intuitively, production may rise if expected price falls and price 

becomes more dispersed. Finally, we apply the technique to the profit function 

under uncertainty. -We develop an expression for expected output and find that, 

if we hold a particular function of profit function curvature constant, then a 

spread of the profit function curvature increases (decreases) expected output if 

the price c.d.f is concave (convex) in the locality of the curvature change. While 

each problem can eventually be solved using stochastic dominance techniques, 

this approach provides insights into the economics of the problem at hand and 

into the meaning of stochastic dominance. Curvature is seen as generating 
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options on the stochastic variable. 

A particularly interesting aspect of the results presented is the way the c.d.f, 

rather than moments, are important in determining economic effects. The well-

developed statistical theory of reliability, with its emphasis on c.d.fs, may hold 

fruitful implications for the theory of the firm under uncertainty. 
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APPENDIX I 

Riemann Integration; Partition an interval [c, d] on the domain of Y into n 

segments. Thus c = ^ s Y^_^ i  Y^ = d.  A partition, X, is described 

by the points Consider the function g(Y). Define 

AF, = sup g(Y) such that Y^_^ Y û Y^. 

M, = infg(Y) such that 7^. ,  a: F ^ Y).  

f (x,  «) = A y),  MX, «) = Ê"! Ay,.  
<•1 <"1 

The U(X, g) and L(X, g) are upper and lower bounds, respectively, on the 

integration over the partition X. Define 

g) = irtf of l/(X, g) over all possible partitions = Upper 

Riemann integral. 

supj(L{X, g) = sup of L(X, g) over ail possible partitions = Lower 

Riemann integral. 

If infxU(X, g) = supxL(X, g), then the function g(Y) is Riemann integrable 

over [c, d]. 

Stieltjes Integration: Let a(Y) be a monotonically increasing function on [c, d]. 

The function may, as in the case that shall be considered, be monotonically 

decreasing also. However, to be consistent with how textbooks explain Stieltjes 

integration, we shall assume that a(Y) is monotonically increasing. Denote 

A = a(Y^) -
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U(X,g,a) = A LiX»g,a) = J] m, A a^. 
i-i <-i 

If infxU(X, g, a) = supxL(X, g, o), then the function g(.) is Stieltjes integrable 

over [c,  d] .  Now refer  to  Theorem 6.9 in Rudin [26].  

Theorem: Ifg(Y^ is monotonie on [e,  d] and if  «(YJ is both monotonie and 

eontinuous on [e, d], then g(Vj) is Stieltjes integrable. 

Now refer back to equation (7). Let g(Yj) be /(^ ~ ^|) /(f) àP, Replace 

with aj, the marginal utility at Y,. We wish to show that (7) is Stieltjes 

integrable and, at the limit, the summation sign may be replaced by an 

integration sign. We need to show that /(^ " /(f) is monotonie in Yj. 

Remember that Q is held constant. From (3) and (4) we see that 

Pi = [y, + C«?)]/<? so 

5 • 
Derive ~ /(f) ^ with respect to Y,, noting that P, is a function of Y;, 

fi 
g *" dP * 
^ = - //(P) dP -  [P^Q - C«?) - = - //(/») dP. 

Thus, the function is monotonie. We also need to show that a(Yj) = aj = 

is continuous and monotonie. If U" exists then V must be differentiable, and 

so must be continuous. If U" < 0, then «(f)) = J, = U'Çf) is monotonie. Thus, 
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at the limit we can change variables (see Rudin Theorem 6.19) and so replace 

(7) with 

£[i/(y)i = £[n + / f( r  -  r , )  f ( p ) j p  dU'. 

where is income when price is zero. Now replace dU' with U"dï^, 

^ = U" -» dU' = U" dY^. 
dYf 

By substitution we arrive at 

(8) E[UiY)] = E[y] + /  U"(Y^) f (Y-Y,)f(P)dP dY., 
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APPENDIX II 

Differentiate equation (8) above using Liebnitz rule on the variable bounds of 

integration. Note that = - C(Q), and P, =[Y| + C(Q)]/Q. 

®  *  f  -  C ' ) f { P )  d P  d Y t  

" / gp ' 

- /i"'(y,)(i',-WW[â5 SI, 

- «"(w7[P0-c«?) - ) <»%:. 
0 

The / U"(y)[yry^ term cancels. As Y„i„ = - C(Q), and 

we can write 

- U"{Y^)][PQ-Cm-Yr:^mP) dP^ 
0 "V 

= C'U"(.r^)Qfpm iP = C'V'\Y^)QEm-

0 

Therefore, the first order condition is 

(10) 0 = E [ P ]  - C ' +  f  U " ( Y ^ ) f { P  - CO /(f) dP dY^ + C'U"(Y^)QEiPl 
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APPENDIX III 

We refer to Figure 3. There are five possible situations: all the density 

changes occur above C% three of the changes occur above C^, two occur above 

it, one occurs above it, or all occur below it. Let us now consider the case where 

three changes occur above it. We will use the notation in Figure 3. Each density 

change has width 2A. 

On [?! - A, ?! + A] the value of h(P) is p. 

On [Pj - A, Pg + A] the value of h(P) is - p. 

On [P3 - A, P3 + A] the value of h(P) is - a. 

On [P4 - A, P4 + A] the value of h(P) is a. 

The m.p.s ensures that 

fh(P) dP = 0, 
O 

and 

fp h(P) dP = 0. 
0 -

When Pi > Pi, then /(^ " h(P) dP does not change. 

When Pj > P, > i*2, then 

f(P -  C') h(P) dP = f  (P-COP dP 
P, P.-A 

= 2AP(P, - CO > 0. 

When Pj > P| > P3, then 
m Pi*A 
f(P -  C') h(P) dP = f  (P-COP dP -  f (P-COP dP 

Pf P|-A 

= 2Ap(P, - Pj) > 0. 
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When P ^ >  P ^ >  P4, then 
i^+A 

-  C ' )  H P )  d P  =  -  f  (P-COa d P  =  l L a { C '  - > 0. 
f, l^-A 

When P4 > then 
m m 

J ( P  - CO A(P) d P  = J ( P - C ' ) h ( P )  d P  =  0 .  

p, 0 

Thus, in all cases the m.p.s increases the value of the function regardless of the 

value of Pj. The cases where two changes, and one change occur above marginal 

cost yield identical qualitative results. 

Now we will show that violations may occur when the entirity of the m.p.s 

occurs either above or below marginal cost. Consider when the m.p.s is all above 

marginal cost. 

When Pj > P,, then J(P - C) h ( P )  d P  does not change. 
f, 

When Pi > P, > P2, then 
f,*A 

|(P - C ' )  h ( P )  d P  = f (P-COP d P  = 2AP(P, - C) > 0. 

When ^2 ^ ^ ^3, then 
» f|+A i»2+A 

f( P  -  C) h ( P )  d P  =  f (P-COP d P  - f (P-COP d P  

Pf P|-A fg-A 
= 2Ap(P, - Pj) > 0. 

When P3 > P, > P4, then 
f^+A 

J(P - C) H P )  d P  = - f (P-COa d P  = 2Aa(C' - P4) < 0. 
p, P4-A 

When Pa^ Pi, then 

|(P - CO A(P) d P  =  f ( P - C ' ) h ( P )  d P  =  0 .  

p, 0 

Thus, if the absolute value of U" is very large when Pg > P, > and all the 
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m.p.s is above marginal cost, then the value of 

B = j  f(P-C) f(P) dP dYf may fall. This, in turn, will lead to an 
P, 

increase in output. Therefore, second degree stochastic dominance, in addition 

to risk aversion, does not ensure increased output. 

Consider when the m.p.s is all below marginal cost. 

When Pi > Pi, then f(P ~ ^P does not change. 
ft 

When P, > /*, > then 

/(/» - C) A(f) dP = j  (P-COP dP = 2AP(P, - C') < 0. 
f, P.-A 

When P2 > Pf > P3, then 
m i»,+A 

f(P -  C') hiP) dP = f  (P-COP dP -  f (P-COP dP 
P, l»,-A I'j-A 
= 2AP(P, - P2) > 0 

When P3 > Pj > P4, then 
P4*à 

f(P -  C) h(P) dP = -  f (P-C')a dP = 2Att(C' -  P^) > 0.  
P, P.-A 

When P4 > P,, then 

|(P - C') h(P) dP = f(P-C')h(P) dP = 0.  
p, 0 

From Rothschild and Stiglitz [25] theorem 1(b) it follows that 

a) any mean preserving change in the density function that can be decomposed 

into mean preserving spreads, none of which occur either entirely below marginal 

cost or entirely above marginal cost will reduce output. 

b) any mean preserving change in the density function that can be decomposed 

into mean preserving spreads all of which occur either in [0, C] or [C, «»), but 
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can not be decomposed as in a), will have a quantity effect that depends 

necessarily on the interaction between the utility curve and the c.d.f change. 

Of other mean preserving changes in the c.d.f nothing can be said at present. 

The issue involves set theory. In particular the theory of measures, signed 

measures, and measure decomposition may provide answers. 
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APPENDIX IV 

Theorem 2: For any mean reducing (increasing) spread, there exists a concave 

utility junction with U"'(X) > 0 such that production rises (falls). 

Proof: We will prove for the mean reducing case. The other case is almost 

identical. Following the analysis in Appendix III, for P, below the lowest chunk 
m  m  m m  

in h(P), /f g{P) dP < fpm àP, while fC g(P) dP - jc'm dP. Tims, 

there is a strictly positive price P" for which if P, is in [0, P ), then the value of 

j{P-C') f{P) dP falls with a mean reducing spread. Let be absolutely 
Pi 
very large, and let it rise steeply as P, rises from 0 to P*. Such a path for U"(Y) 

can be chosen so that 

B = f  U"{Yi)f{P -  C')f(P) dP dYf 
p, 

rises with a mean reducing spread. In (10), C'U"(Y^QE[P] will also rise with 

a mean reducing spread. While E[P] will fall, it is admissible to choose 

^ ~1/[QC'] so that (10) will assuredly rise. From the second order 

condition, if the right hand side of (12) is positive, then Q must rise to restore 

equilibrium. Thus Q must rise. Q.E.D. 
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GENERAL SUMMARY 

In this thesis contingent claims techniques have been applied to the problem of 

optimizing the expected value of a welfare function. In paper I we consider the 

relationship between financial market completeness, corn production, and the 

corn target price program. Using the observation that the program is similar to a 

put option issued by the government, we found that the per acre program benefit 

in 1993, at around $20/acre, was quite large. We also found that the program 

encourages producers to engage in the trading of contingent claims, and that the 

existence of contingent markets facilitates the policy maker's goal of decoupled 

agricultural support. In paper II we proposed a method for estimating the 

expected cost to the government of the corn target price program. The model 

allows the government to understand the implications for output and budget 

control of different program parameter choices This model may be adapted to 

other economic problems, such as the effects of minimum wage or rent control 

laws on production and factor use. In paper III we suggest that there is an 

inconsistency between the structure of existing contingent claims markets and 

how economists would seem to prefer to approximate demand functions. We 

propose an alternative structure that is consistent with the preferred approach to 

demand function approximation, and with the moment based foundations of 

statistics. In the final paper we propose ^n alternative perspective on problems 

involving the maximization of the expected value of a welfare function. We 

reformulate the objective function in terms of options. We then show that 
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existing techniques from economics, statistics, and finance theory may be applied 

to better understand the economic effects of uncertainty. Three standard 

economic problems are considered; valuation of a risky investment, production 

under price uncertainty, and the effects of price uncertainty on expected profit. 



www.manaraa.com

160 

ACKNOWLEDGMENTS 

I am indebted to my major professor, Dr. Dermot Hayes whose, guidance, 

encouragement, enthusiasm, and availability made my thesis and general graduate 

studies much more enjoyable and rewarding than I had expected. I am grateful 

to my committee which comprised of Dr's Yasuo Amemiya, Bruce Babcock, 

Harvey Lapan, and Giancarlo Moschini, in addition to Dermot Hayes. As well as 

the courses that they taught, I acknowledge their specific contributions to this 

thesis. Their very professional attitude caused me enough worry to make me 

reach that hardest extra inch. I appreciate the support of Mrs E.O. Heady and 

the Earl O. Heady Memorial Fellowship. I thank Pam Kirkhart for putting the 

papers final drafts into shape. I also thank my past and present office mates 

Yong Sakong, Sean Fox, Sergei Sotnikov and John Greene for their advice and 

for putting up with me. Apart from those taught by my committee, the courses 

that have influenced most the content of this thesis were given by Professors K. 

Athreya, W. Kliemann, and R. Chhikara at I.S.U. The general level of support 

that I have received at I.S.U has made my work a very pleasant experience. 

I would like to recognize Dr John Murphy for encouraging me to come to the 

U.S. I am appreciative of the opportunities that the U.S., still the land of hope, 

has made available to me. Finally, I acknowledge the sacrifice and wise counsel 

of my parents. 


	1993
	Applications of contingent claims theory to microeconomic problems
	David A. Hennessy
	Recommended Citation


	tmp.1417646165.pdf.Qj19a

